

Wind power: Social, environmental and economic concerns

Georgios Avgerinopoulos

gav@kth.se

Introductory lecture – Energy commodities and technologies

This work by OpTIMUS.community is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Global trends

- Wind power: overview
- Economic concerns
- Environmental concerns
- Social concerns

- Wind energy is conveyed by the uneven heating of the earth by the sun.
- > Local topography (mountains) can enhance or restrict the natural wind flow.

$$P_{wind} = \dot{E} = \frac{1}{2}\dot{m}v^2 = \frac{1}{2}\rho Av^3$$

- ➤ A 10 % change in speed will result in a 33% change in energy.
- Turbulence Decreases the Effectiveness of a wind Turbine and imposes more wear and tear on the Wind Turbine.

Change in total electricity demand and renewable-based power supply in the New Policies Scenario 2014-2040

Source: IEA World Energy Outlook 2016.

Onshore

Offshore

Output really depends on location characteristics.

- Higher performance but also higher investment cost in offshore.
- Intermittent output, not completely predictable.

➤ Betz limit: up to 16/27 of the power in the wind can be converted to mechanical power by a turbine.

Wind power: economic concerns

- Land use
 - A modern wind farm uses only 1% of the land occupied and the towers only 0.2%
 - Access roads must be build for
- Land-based farms
 - The average wind farm requires 0.1 km2 of unobstructed land per megawatt of design capacity
- High level of intermittency and unpredictability
 - Not a stand-alone source
 - To be coupled either with other generation technologies or storage

Wind power: environmental concerns

- ➤ Electromagnetic effects and increased sediment temperature along cables for direct current.
- Changed erosion and accumulation conditions.
- Physical encroachments on habitats.
- Barrier effects, e.g. at migration.
- Fragmentation of landscape.
- ➤ Visual appearance light, shadows and reflexes may be disturbing for both wild and domestic animals.

Wind power: social concerns

- Aesthetics
 - Visual perception
- Flickering
- Electromagnetic interference Now minimized/eliminated with fiberglass blades
- Noise (mechanical and electrical equipment; aerodynamic)
 - 200 meters away from a wind turbine a normal noise level at wind speeds about 8m/s is 45 dBA
 - Denmark: minimum distance to households 200m.
 - Sweden: wind turbines are usually not placed closer than 300-500 meter from nearest household

Technologies in the wind chain

- On-shore wind
- Off-shore wind

Sample Reference Energy System

Sample Reference Energy System: Wind

Onshore wind

- Mature technology, lowest costs in the United States and China.
- The overall performance of wind power depends on the specific characteristics of each location.
- The capacity of a wind turbine can vary from a few kW to 9MW.
- If the exact same (group of) wind turbine(s) is installed in different locations, the parameter that changes is the capacity factor.

Key characteristics				
Onshore wind				
Capital cost onshore	1400 €/kW			
FOM cost	2.7% of capital			
Avg. capacity factor	23%			
Indirect GHG emission factor	10 tCO2 eq/GWh			
Lifetime	20 years			

Offshore wind

- Mature technology in Northern Europe, but experience still limited elsewhere.
- In general, higher costs than onshore, but also higher performance (especially in terms of capacity factors).
- ➤ Higher capacity factors due among others to lower disturbance of the flow.

Key characteristics			
Offshore wind			
Capital cost onshore	3470 €/kW		
FOM cost	3.7% of capital		
Avg. capacity factor	34%		
Indirect GHG emission factor	16 tCO2 eq/GWh		
Lifetime	20 years		

References and reading material

IEA, World Energy Outlook 2016;

European Commission, Joint Research Centre, Energy Technology Reference Indicators (ETRI) 2014. Available at:

https://setis.ec.europa.eu/sites/default/files/reports/ETRI-2014.pdf;

IEA, NEA, Projected Costs of Generating Electricity 2015. Available at: https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf;

IEA-ETSAP, Energy Technology Data Source. Available at: https://iea-etsap.org/index.php/energy-technology-data;

Sources for the RES pictures

Gasification: http://www.gbgasifired.com/model.html

Extraction: http://www.energytrendsinsider.com/research/coal/coal-mining-and-processing/

Refinery: http://stillwaterassociates.com/crack-spread-a-quick-and-dirty-indicator-of-refining-profitability/

Biomass: http://inhabitat.com/tag/biomass/

Renewables: http://www.topnews.in/wind-water-and-sun-beat-biofuels-nuclear-and-coal-clean-energy-297577

Uranium: http://unitednuclear.com/index.php?main page=product info&products id=1028

Fossil: https://www.slideshare.net/MMoiraWhitehouse/fossil-fuels-teach

Combustion based power plants: https://en.wikipedia.org/wiki/Battersea Power Station in popular culture

Uranium enrichment: http://energyfromthorium.com/2010/08/06/loveswu1/

Residential: http://jhsimpson.com/residential/

Transport: https://se.123rf.com/dipart-vektorer/transport.html

Industry: http://indianexpress.com/article/business/economy/factory-output-grows-2-per-cent-in-february-after-3-months-of-contraction/

Commercial: http://www.alfalaval.com/industries/refrigeration/commercial-refrigeration/

Transportation of fuel: http://www.zerohedge.com/news/2017-06-23/demand-oil-pipeline-capacity-hits-6-year-low

Transportation of biomass: http://www.forestenergy.ie/transportation-studies.php

Transportation of oil products: http://www.picquery.com/gasoline-truck WXRZaplkZ2eaRVifu*zjqPAvrMnnxmBsTSgdn*BBBKk/

Sources for the RES pictures

Decentralized energy supply: http://trayamtechnologies.com/solar-pv-roof-top-and-ground-mounting/

Decentralized energy supply2: http://www.sunwindenergy.com/photovoltaics/38-mw-rooftop-pv-system-completed-uk

Biogas and bio-synthetic gas production: https://ehp.niehs.nih.gov/123-a180/

Onshore wind: https://www.mitchelltech.edu/programs/on-campus/energy-production-transmission/wind-turbine-technology

Offshore wind: http://inhabitat.com/tag/offshore-wind-farm/

Solar tower: http://www.power-technology.com/projects/seville-solar-tower/seville-solar-tower1.html

PV panels: https://dir.indiamart.com/coimbatore/solar-pv-panel.html

Solar power area requirements: http://forums.mwerks.com/showthread.php?7477561-Global-Energy-Thread

Bioenergy conversion:

http://14.139.172.204/nptel/CSE/Web/103102022/environmental%20issues%20and%20new%20trends/ecological%20consideration%20issues%20and%20issu

Changelog and attribution

Date	Author	Reviewer	Reviser
2017-09-26	Georgios Avgerinopoulos	Mark Howells	Georgios Avgerinopoulos

To correctly reference this work, please use the following:

Avgerinopoulos, G., 2017. Wind power: Social, environmental and economic concerns, OpTIMUS.community.

Available at: http://www.osemosys.org/understanding-the-energy-system.html. [Access date]