

Oil: Social, environmental and economic concerns

Francesco Gardumi

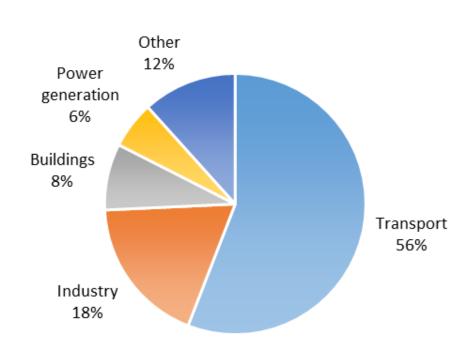
gardumi@kth.se

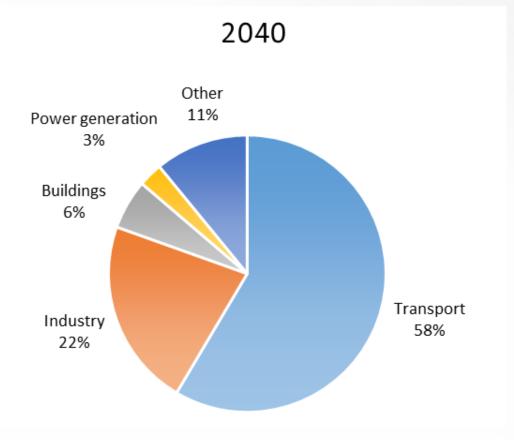
Introductory lecture – Energy commodities and technologies

This work by OpTIMUS.community is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Commodity: global trends

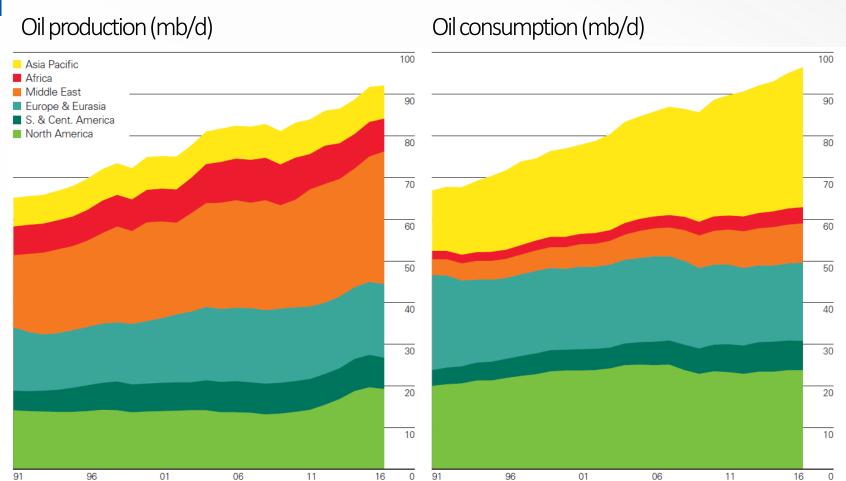
- Demand
- Supply
- Resources





Total: 92.5 mb/d

2015



Source: IEA World Energy Outlook 2016.

Supply

Source: BP Statistical review of World Energy 2017.

Conventional resources:

- Crude oil
- NGLs (Natural Gas Liquids): including heavier molecules than Methane, like Ethane, Propane, Butanes, Pentanes...

Unconventional resources:

- EHOB (Extra-Heavy Oil and Bitumen): aka oil sands. Highly dense and viscous crude oil trapped in unconsolidated sandstone. Main deposits: Alberta (Canada) and Orinoco (Venezuela).
- Kerogen oil: aka oil shale. Produced from fine-grained sedimentary rock containing kerogen (solid mixture of organic compounds). Main producer in 2009: Estonia.
- Tight oil: light crude oil contained in petroleum-bearing formations of low permeability. Produced by hydraulic fracturing of the rocks (similar process as for shale gas). Main reserves: Russia, US, China, Argentina, Libya, Venezuela. Currently developed in US and Canada.

Resources

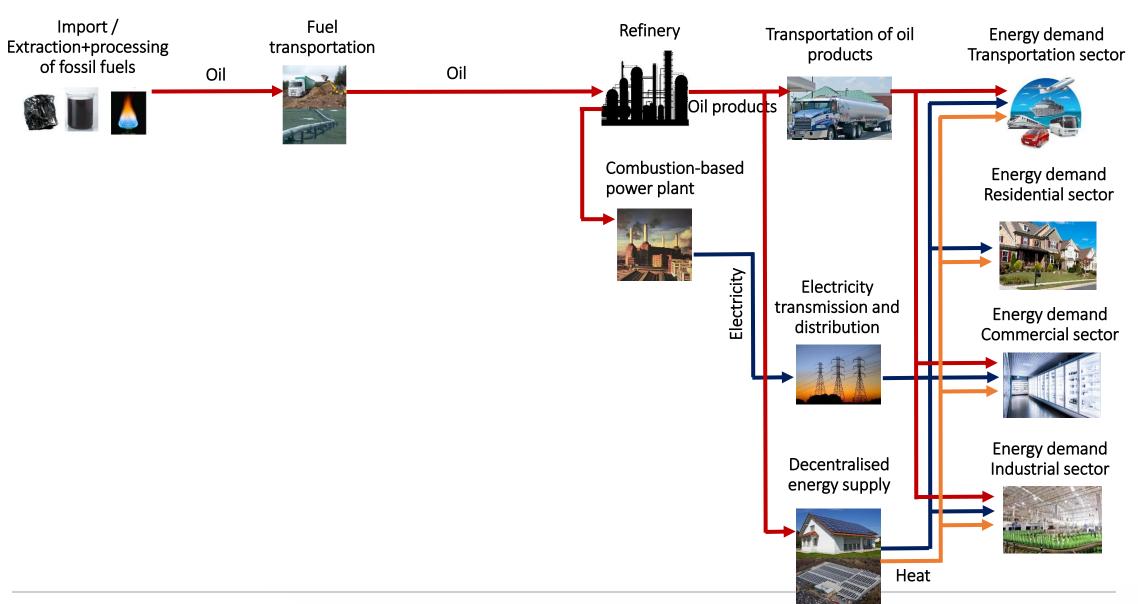
Oil resources (billion barrels)

	Conventional		Unconventional		Total		
	Crude oil	NGLs	ЕНОВ	Kerogen oil	Tight oil	Resources	Proven reserves
OECD	319	144	808	1 016	135	2 422	254
Americas	250	101	805	1 000	104	2 260	237
Europe	59	25	3	4	16	107	13
Asia Oceania	10	18	-	12	16	56	4
Non-OECD	1 882	404	1 068	57	285	3 697	1 448
E. Europe/Eurasia	260	65	552	20	88	984	142
Asia	125	50	3	4	56	239	46
Middle East	940	153	14	30	29	1 166	803
Africa	316	87	2	-	54	459	130
Latin America	242	50	497	3	57	849	326
World	2 201	548	1 876	1 073	420	6 118	1 703

Proven reserves = 90% probability to be extracted profitably

Reserves to Production ratio (R/P) of around **40 years**

Source: IEA World Energy Outlook 2016.



Technologies in the oil chain

- Extraction
- > Transportation and storage
- Refinery
- Combustion-based power plants
- Economic, Environmental and Social concerns

Sample Reference Energy System

Extraction

Processes - conventional oil:

- Conventional wells: lately case drilling is used
- Deepwater production: made possible by floating platforms. 3000 m reached in 2005.
- Enhanced Oil Recovery (EOR): CO2, N2 or CH4 injected to displace and replace oil.

Processes - unconventional oil:

- Cycle Steam Simulator (CSS): steam injected in the well to allow oil to flow. Used with Extra Heavy Oil.
- Steam Assisted Gravity Drainage (SAGD): similar to CSS, but oil is allow to drop onto a lower horizontal collector by gravity.
- Retorting: heating in the absence of Oxygen.

Key characteristics				
Conventional oil				
Capital cost	5.3-63.7 \$/boe			
VOM cost	3.2-8.3 \$/boe			
Recovery factor	30-50%			
Energy use	0.8-2.3 GJ/toe			
CO2 Em. factor	64.9-273.6 ton/ktoe			
Unconventional oil				
Capital cost	-			
VOM cost	6.6-19.7 \$/GJ			
Recovery factor	10-70%			
Energy use	20-30% of produced			
CO2 Em. factor	9.3-15 gCO2/MJ			

Transportation and storage

Oil tankers

Usually for international transportation of crude oil.

Pipelines

Usually for domestic transportation to refinery sites. Equipped with pumping stations.

Trucks and railway

For short-distance transportation of limited quantities from small wells to refineries.

Storage

In shallow or underground tanks, or oil tankers. For market (prices) or security reasons.

Key characteristics				
Oil tankers				
Capital cost	48-151 M\$			
Fuel consumption	2.2-3.8 g diesel/ton- km			
Lifetime	29 years			
CO2 Em. factor	3.8-6.6 gCO2/ton-km			
Pipelines				
Capital cost	2.3 M\$ / km			
Energy use	0.5% of transported			
Lifetime	25-40 years			
CO2 Em. factor	-			

Basic process consists in atmospheric + vacuum distillation. Refineries can be categorised based on complexity:

Topping: basic processes.

Hydro-skimming: in addition to basic processes, they include hydrotreating and reforming units for light compounds.

Conversion: compared to hydro-skimming they also include catalytic cracking and hydrocracking for heavier oils.

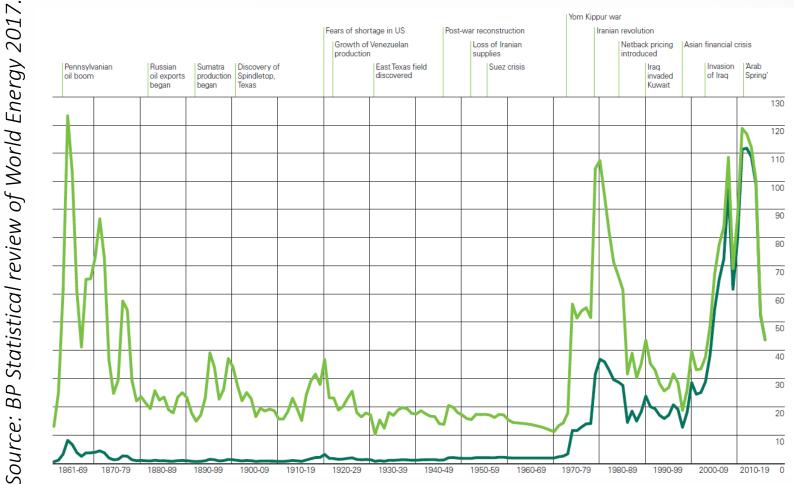
Deep-conversion: like conversion refineries, with addition of coking units for the heaviest oil fractions.

Key characteristics			
Capital cost	31 k\$ / barrel – day		
O&M cost	3-4 \$ / barrel		
Efficiency	90%		
Energy use	Increasing 61 MJ/m3 crude oil feedstock per additional 1 kg/m3 sulphur		
CO2 Em. factor	47.4 kg CO2/barrel Can increase 40% with low quality crude		
Capacity factor	83-93%		

Combustion-based power plants

Utility scale power generation from oil products like heavy fuel oil or diesel has been phasing out and has now a minor share. Small diesel generators are still used as backup (e.g. in hospitals, factories or households), especially in developing countries.

Traditionally, oil products were used for instance in:


- Heavy Fuel Oil-fired gas turbines;
- Utility scale diesel generators.

Key characteristics				
HFO Gas Turbines				
Capital cost	1490 \$/kW			
Efficiency	35%			
Diesel generators				
Capital cost	780 \$/kW			
FOM cost	8 \$/kW/a			
Efficiency	35%			

Economic concerns

Given the oscillation of the oil prices, it is important to have:

- Moderated *Import*dependency: portion of primary energy imported from other countries;
- High *Diversity* of the energy mix: 1) in the resources and 2) in the suppliers

Hydraulic fracturing (fracking). Well-stimulation technique used for tight oil. Consists in fracturing rocks with pressurized liquid, containing water, proppants and thickening agents. Once fractures are created to extract oil or gas, the proppants hold the fractures open. Concerns regarding:

- Waste-water disposal
- Pollution of underground water
- Increased seismic activity (e.g. Canada, Montney's formation)
- No full transparency about chemicals used in the pressurized mixture

Extraction of oil sands. Water-consuming process. It is sometimes limited through water recycling.

Gas flaring in production sites. Residual natural gas extracted with oil is burnt, causing CO2 and pollutants emissions and waste of resources.

High number of oil spills due to accidents

BP oil rig Deepwater Horizon, US - Gulf of Mexico, 2010. Estimated 500-600 thousands tonnes oil spilled

Mingbulak oil field, Fergana Valley, Uzbekistan, 1992. Estimated 285 thousands tonnes oil spilled

The 5 largest oil spills in history (Source: The Telegraph)

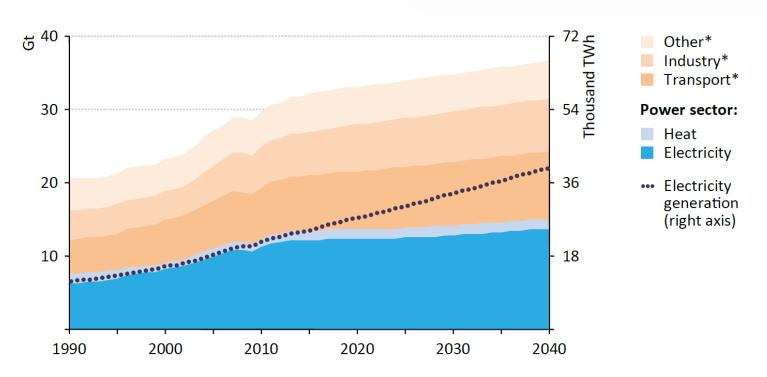
What?	When and where?	How much? (Mgallons)
Gulf war	1991, Kuwait	240-336
Deepw. Horizon	2010, Mex. gulf	210
Ixtoc 1 Oil Well	1979, Mexico	140
Atlantic Empress	1979, Trinidad	88
Fergana Valley	1992, Uzbekistan	88

Direct and indirect emissions of CO2 and pollutants.

Emissions from combustion of Hydrocarbons have effects at different scales: *global, regional and local*.

CO2: GHG with effect at global scale;

NOx and **SOx**: effects at regional scale (acid rains and human health impacts) and global scale (destruction of stratospheric ozone layer);


PM (Particulate Matter): effects mainly at local scale;

CO: effects mainly at local scale (intoxication, deathly at high concentrations).

Direct and indirect emissions of CO2 and pollutants.

^{*} Includes only direct emissions in each sector.

Source: IEA, World Energy Outlook 2015, New Policies Scenario.

Global CO2 emissions by sector (direct).

Oil products-based transport sector accounts for second biggest share in global CO2 emissions.

But we saw in the description of the oil supply chain that there are emissions along the whole chain!

Social concerns

- Oil often imported from politically unstable regions, where sometimes wars, civil conflicts or turmoil in act (see e.g. Nigeria, Iraq, etc.)
- Oil production activities from foreign companies do not necessarily help reduce the militarisation of some regions
- Reported cases of big displacement of population for oil extraction activities: Nigeria, Sudan, Ecuador, Colombia.
- Oil spills also harm local societies and activities: e.g. spill of Deepwater Horizon affected the fishing activities of communities along the coast.

Conclusions

- There is high demand for oil in all sectors, which is not expected to decrease;
- Until it doesn't, production of conventional and unconventional oil is expected to continue, with economic, environmental and social constraints;
- The transportation sector drives large part of the demand. Electrification of this sector could contribute largely to a drop in the production.

References and reading material

IEA, World Energy Outlook 2016;

British Petroleum, Statistical Review of World Energy 2017. Available at:

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf;

IEA-ETSAP, Energy Technology Data Source. Available at: https://iea-etsap.org/index.php/energy-technology-data;

How natural gas could be a geopolitical game-changer in the Mideast:

https://www.youtube.com/watch?v=pay5dKYvXGU

Profit Pollution and Deception BP and the Oil Spill:

https://www.youtube.com/watch?v=8zGFvzMMO9w&t=706s

Sources for the pictures

Gasification: http://www.gbgasifired.com/model.html

Extraction: http://www.energytrendsinsider.com/research/coal/coal-mining-and-processing/

Refinery: http://stillwaterassociates.com/crack-spread-a-quick-and-dirty-indicator-of-refining-profitability/

Biomass: http://inhabitat.com/tag/biomass/

Renewables: http://www.topnews.in/wind-water-and-sun-beat-biofuels-nuclear-and-coal-clean-energy-297577

Uranium: http://unitednuclear.com/index.php?main page=product info&products id=1028

Fossil: https://www.slideshare.net/MMoiraWhitehouse/fossil-fuels-teach

Combustion based power plants: https://en.wikipedia.org/wiki/Battersea Power Station in popular culture

Uranium enrichment: http://energyfromthorium.com/2010/08/06/loveswu1/

Sources for the pictures

Residential: http://jhsimpson.com/residential/

Transport: https://se.123rf.com/clipart-vektorer/transport.html

Industry: http://indianexpress.com/article/business/economy/factory-output-grows-2-per-cent-in-february-after-3-

months-of-contraction/

Commercial: http://www.alfalaval.com/industries/refrigeration/commercial-refrigeration/

Transportation of fuel: http://www.zerohedge.com/news/2017-06-23/demand-oil-pipeline-capacity-hits-6-year-low

Transportation of biomass: http://www.forestenergy.ie/transportation-studies.php

Transportation of oil products: http://www.picquery.com/gasoline-truck WXRZaplkZ2eaRVifu*zjqPAvrMnnxmBsTSgdn*BBBKk/

Decentralized energy supply: http://trayamtechnologies.com/solar-pv-roof-top-and-ground-mounting/

Decentralized energy supply2: http://www.sunwindenergy.com/photovoltaics/38-mw-rooftop-pv-system-completed-uk

Changelog and attribution

Date	Author	Reviewer	Reviser
2017-09-23	Francesco Gardumi	Francesco Fuso Nerini	Francesco Gardumi

To correctly reference this work, please use the following: Gardumi, F., 2017. Oil: Social, environmental and economic concerns, OpTIMUS.community. Available at: http://www.osemosys.org/understanding-the-energy-system.html. [Access date]