

Hydropower

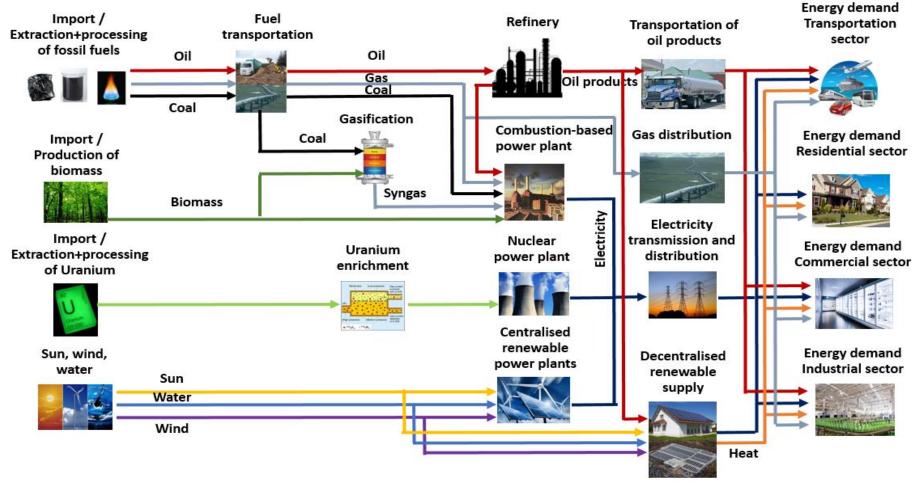
Social, environmental & economical concerns

Caroline Sundin

csundi@kth.se

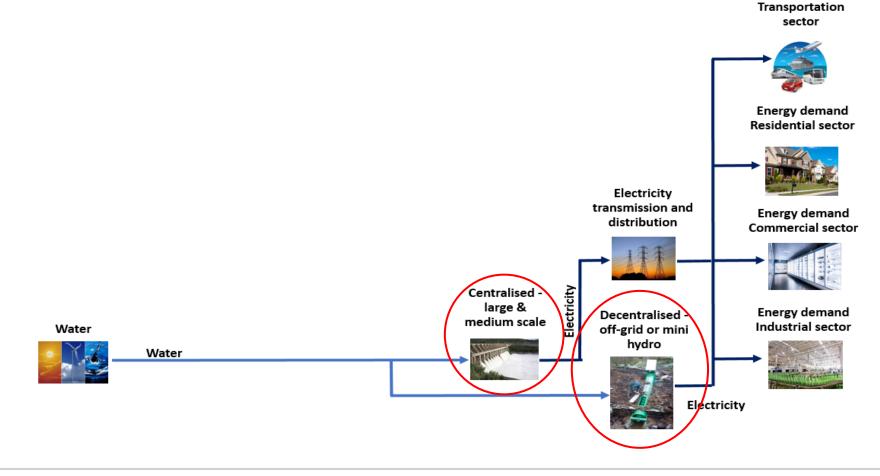
Introductory lecture – Energy commodities and technologies

This work by OpTIMUS.community is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



Reference Energy System

Reference Energy System



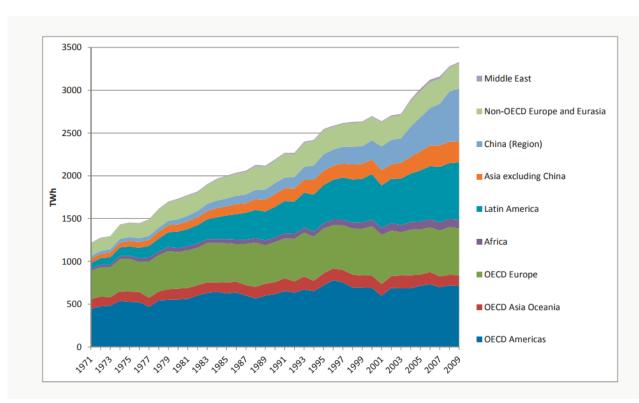
Reference Energy System – Hydropower

Energy demand

Hydropower

Social, environmental and economic concerns

Global Trends


- Historical overview
- Demand
- Future generation
- Global capacity
- Global potential, generation & capacity

Historical overview

Historically an increase in hydropower generation

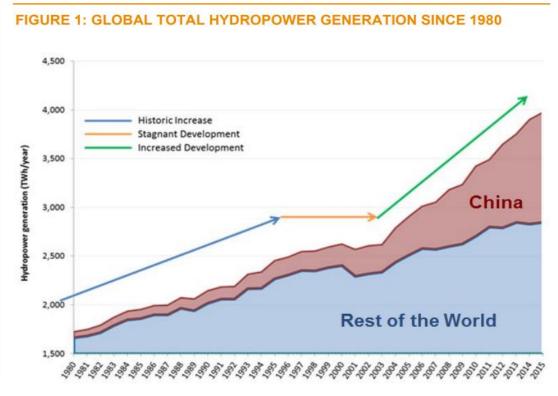


Figure 3.1: Hydropower generation by region, 1971 to 2009

Demand

 Despite large capacity and increase – not a major contributor to the energy demand

Table 2.2 ▶ World primary energy demand by fuel and scenario (Mtoe)

			New Policies		Current Policies		450 Scenario	
	2000	2014	2025	2040	2025	2040	2025	2040
Coal	2 316	3 926	3 955	4 140	4 361	5 327	3 175	2 000
Oil	3 669	4 266	4 577	4 775	4 751	5 402	4 169	3 326
Gas	2 071	2 893	3 390	4 313	3 508	4 718	3 292	3 301
Nuclear	676	662	888	1 181	865	1 032	960	1 590
Hydro	225	335	420	536	414	515	429	593
Bioenergy*	1 026	1 421	1 633	1 883	1 619	1 834	1 733	2 310
Other renewables	60	181	478	1 037	420	809	596	1 759
Total	10 042	13 684	15 340	17 866	15 937	19 636	14 355	14 878
Fossil-fuel share	80%	81%	78%	74%	79%	79%	74%	58%
CO ₂ emissions (Gt)	23.0	32.2	33.6	36.3	36.0	43.7	28.9	18.4

^{*} Includes the traditional use of solid biomass and modern use of bioenergy.

Source: IEA (2016)

Future generation

 Hydropower projected to increase its capacity – but remain fairly constant in terms of total share

 In terms of renewables, particularly wind and solar PV will increase

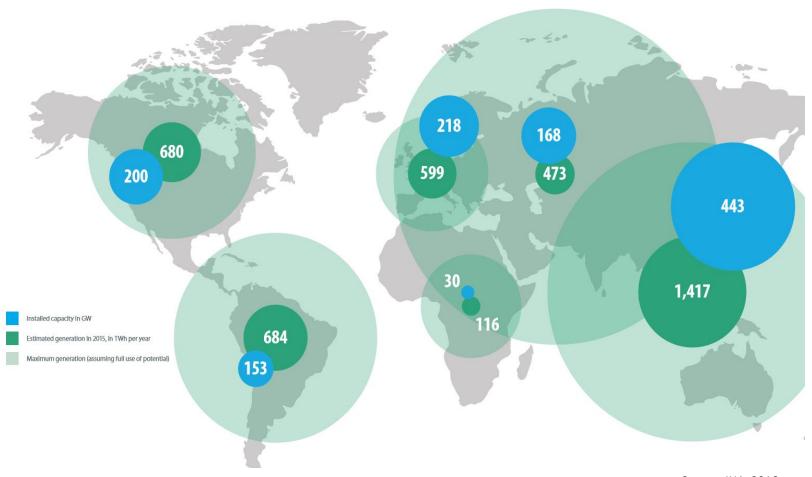
Table 6.2 ► World electricity generation by source and scenario (TWh)

			New Policies		Current Policies		450 Scenario	
	2000	2014	2025	2040	2025	2040	2025	2040
Total	15 476	23 809	29 540	39 047	30 886	42 511	27 688	34 092
Fossil fuels	10 017	15 890	17 175	20 243	19 183	26 246	14 113	8 108
Coal	6 005	9 707	9 934	10 787	11 479	15 305	7 062	2 518
Gas	2 753	5 148	6 514	8 910	6 957	10 361	6 466	5 389
Oil	1 259	1 035	727	547	746	580	585	200
Nuclear	2 591	2 535	3 405	4 532	3 319	3 960	3 685	6 101
Hydro	2 619	3 894	4 887	6 230	4 817	5 984	4 994	6 891
Other renewables	250	1 489	4 074	8 041	3 567	6 320	4 896	12 992
Fossil fuels	65%	67%	58%	52%	62%	62%	51%	24%
Coal	39%	41%	34%	28%	37%	36%	26%	7%
Gas	18%	22%	22%	23%	23%	24%	23%	16%
Oil	8%	4%	2%	1%	2%	1%	2%	1%
Nuclear	17%	11%	12%	12%	11%	9%	13%	18%
Hydro	17%	16%	17%	16%	16%	14%	18%	20%
Other renewables	2%	6%	14%	21%	12%	15%	18%	38%

Source: IEA (2016)

Global capacity

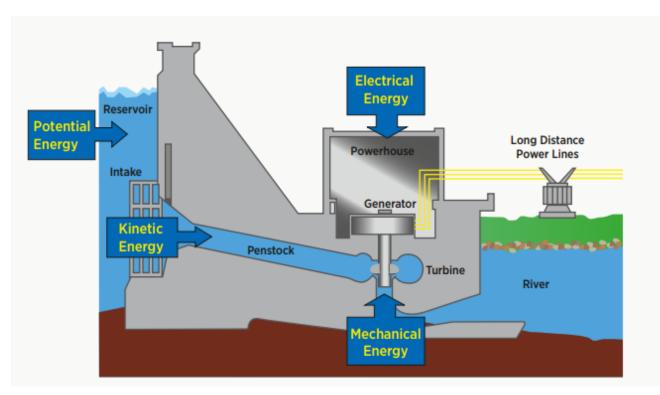
Capacity added in 2015


Source: IHA, 2016

Global potential, generation & capacity

- Technical potential, generation and installed capacity in 2015
- During 2015:
 - 33.7 GW new installed capacity
 - 2.5 GW pumped storage (2016: 5 GW) 1,212 GW global
 - capacity
 - 3,975 TWh generation
- China largest contributor

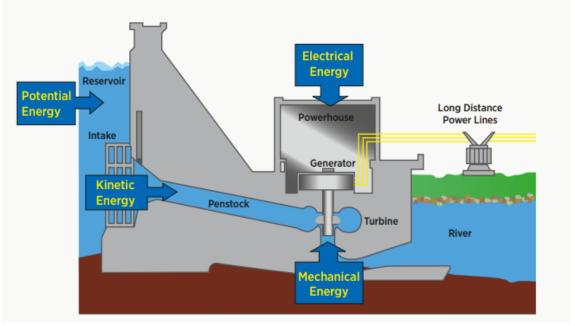
Source: IHA, 2016


Technologies in the hydropower chain

- Introduction
- Governing equations
- Technology overview
- Choice of turbines
- Reservoir operation
- Hydro specific technical parameters
- Economic concerns
- Environmental concerns
- Social concerns
- Climate Resilience

Introduction

Source: Irena, 2012


 A big advantage of hydroelectric power is the ability to quickly and readily vary the amount of power generated, depending on the load presented at that moment.

Note! Many different ways and conventions to write these equations

PTIMUS www.optimus.community

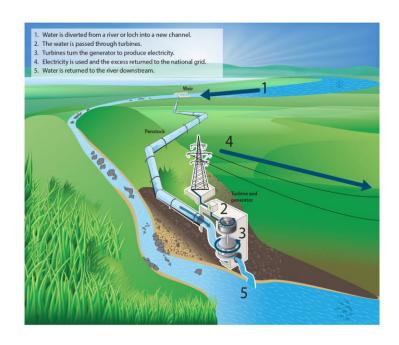
Governing equations

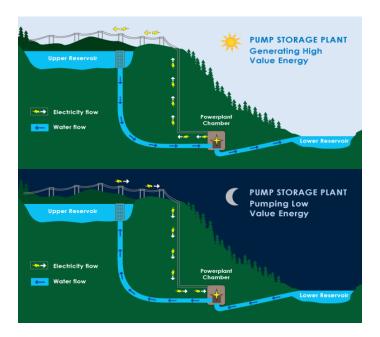
Source: Irena, 2012

- H = Hydraulic head [m]
- ρ = Density of water [kg/m³]
- *V* = *Volume* [*m*³]
- n_t = Turbine efficiency [-]
- n_q = Generator efficiency [-]
- c= Environmental flow deduction factor [-]
- $Q = Flow [m^3/s]$
- $S = Storage [m^3]$
- E= Evaporation [m³]
- P= Precipitation [m³]
- PE= Percolation [m³]
- t= time

Water balance reservoir =
$$S_t = S_{t-1} + (Q_{in,t} - Q_{out,t}) - (E_t - P_t) - (PE_t)$$
 [m³] (1)

Potential energy reservoir =
$$E = \rho * g * h * V [J]$$
 (2)

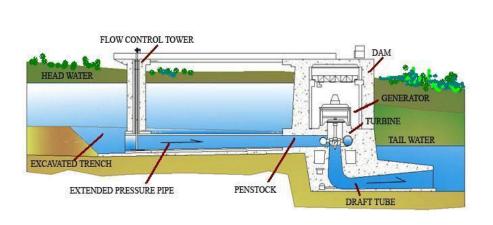

Power output from hydropower =
$$P = \rho \times g \times n_t \times n_g \times c \times \dot{Q} \times h$$
 [W] (3)

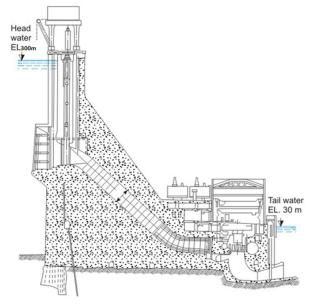

Technology overview

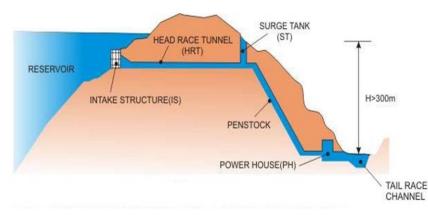
Classification of hydropower plants based on specification type

Run of the River plants

Storage hydropower

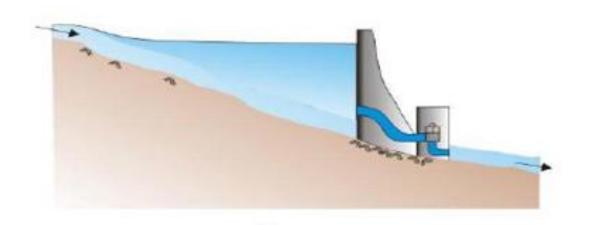

Pumped hydro storage

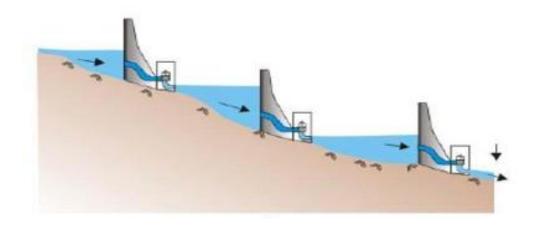



Technology overview

Classification of hydropower plants based on head

Low head


Medium Head


High Head

Classification of hydropower plants based on hydrological sequence

Single stage power plants

Cascade/Multistage hydropower plants

Technology overview

Classification of hydropower plants (Reservoirs) based on the purpose

Multi-purpose reservoirs

Water supply

Flood control

Soil erosion

Environmental management

Hydroelectric power generation

Navigation

Recreation

Irrigation

Classification of hydropower plants based on Size

■ LARGE: >100 MW

■ MEDIUM: 25 – 100 MW

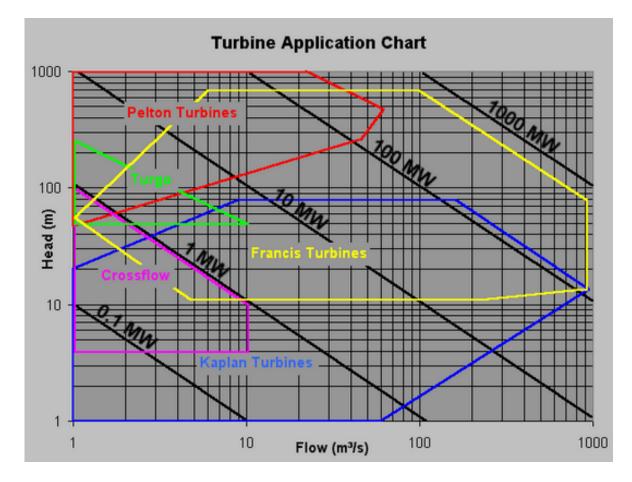
■ SMALL: 1-25 MW

■ MINI: 100 KW - 1MW

■ MICRO: 5 – 100 KW

■ PICO: < 5 KW

Choice of turbines

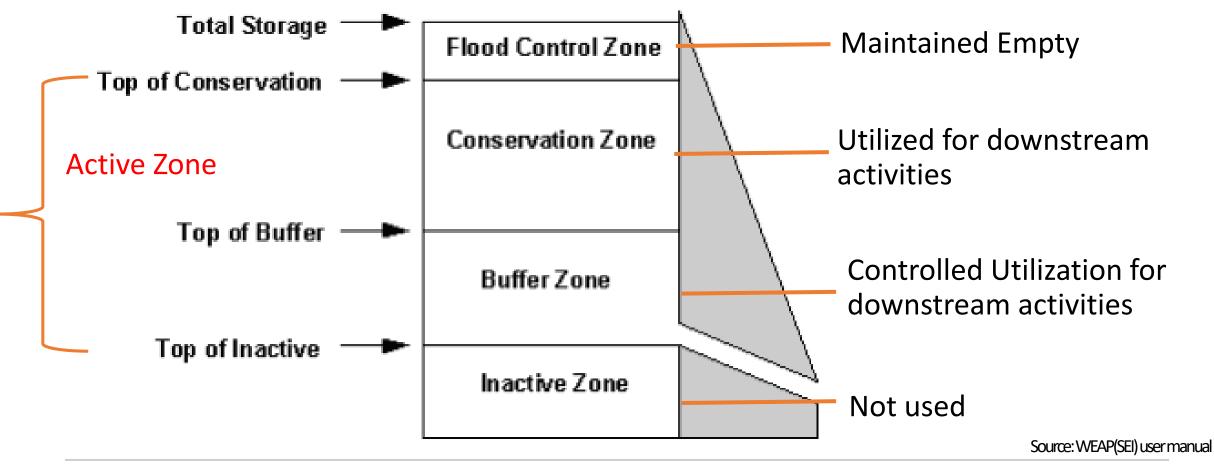


Reaction Turbines

- Francis turbine
- Kaplan turbine
- Tyson turbine
- Gorlov helical turbine

Impulse turbine

- Pelton wheel
- Turgo turbine
- Cross-flow turbine
- Jonval turbine
- Screw turbine



Source: Irena-ETSAP-technology briefs

Reservoir operation

Hydro specific technical parameters

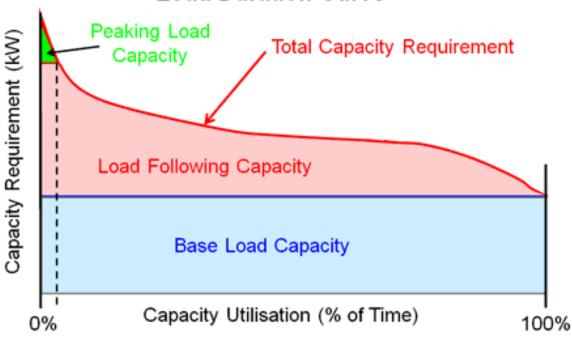
Capacity factor: The ratio of its actual output over a period of time, to its potential
output if it were possible for it to operate at full nameplate capacity indefinitely.

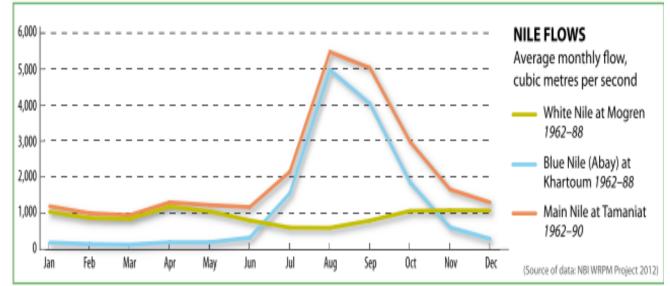
Hydro Power plant capacity: 500 MW

Annual electricity generation: 2000 GWh

Average annual capacity factor = $\frac{2000*1000 (MWh)}{500(MW)*8760(hours in a year)} = 45.6\%$

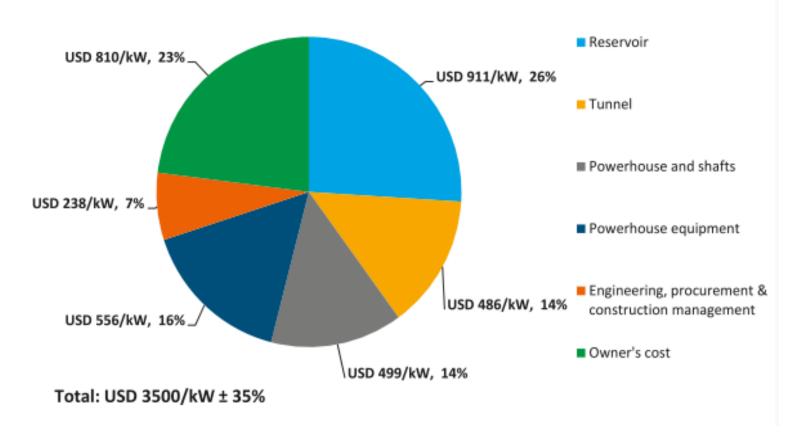
• Availability Factor: The availability factor of a power plant is the percentage of the time that it is available to provide energy to the grid. The availability of a plant is mostly a factor of its reliability and of the periodic maintenance it requires.




Hydro specific technical parameters

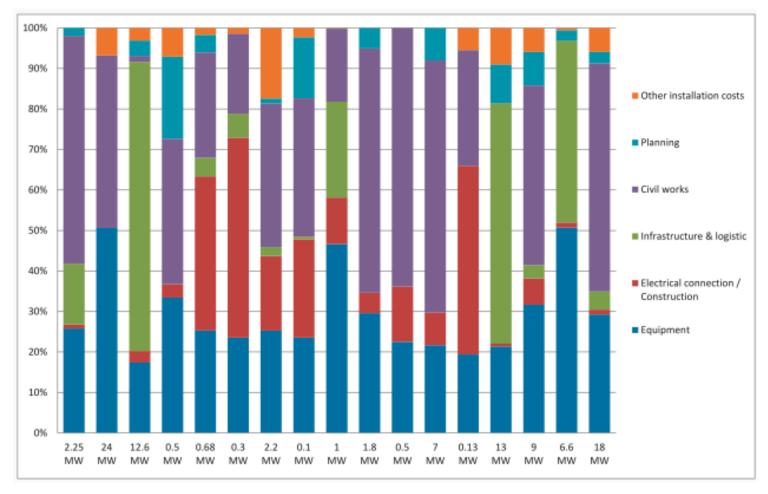
Load curves

Load Duration Curve


Hydropower costs

- The civil works for the hydropower plant construction, including any infrastructure development required to access the site and the project development costs.
 - Dam and reservoir construction;
 - Tunneling and canal construction;
 - Powerhouse construction;
 - Site access infrastructure (roads etc);
 - Grid connection;
 - Engineering, procurement and construction (EPC);
 - Developer/owners costs (including planning, feasibility, permitting, etc.)
- The cost related to electro-mechanical equipment.
 - Turbines, generators, transformers, cabling and control systems

 Cost breakdown of an indicative
 500 MW power plant in USA



source: Irena renewable energy technologies: cost analysis series

 Cost breakdown for small hydro projects in developing countries

source: Irena renewable energy technologies: cost analysis series

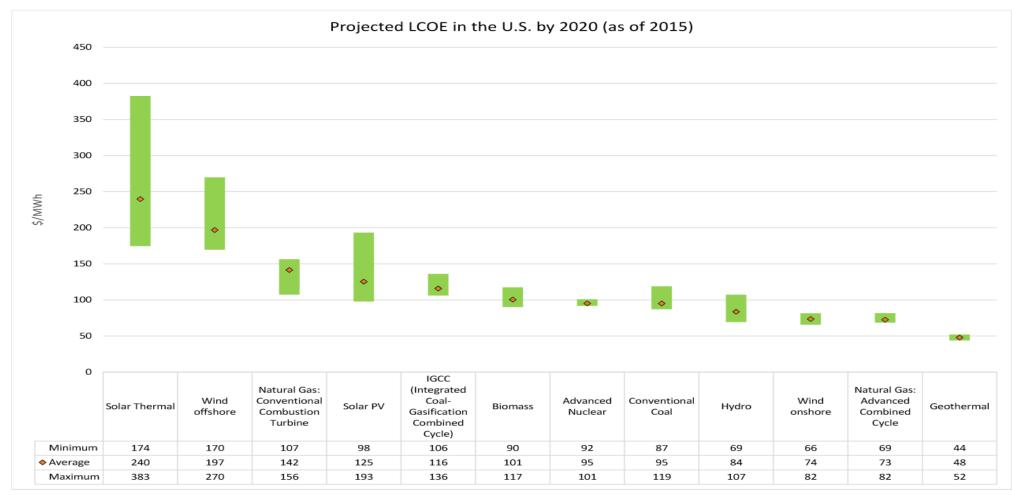
Representing costs in technoeconomic analysis

- Capital/Investment costs
- Operational & Maintenance costs

Size (MW)	Very Small (<1)	Small (1-10)	Large (> 10)
Construction Time (Years)	6-10	10-18	18-96
Technical lifetime (Years)	100	100	100
Average Capacity Factor (%)	40-60	34-56	34-56
Maximum plant avaialbility (%)	98	98	98
Investment Cost	3400-10000 or more	1000-4000	1050-7650
OM cost (USD/KW/Yr)	45-250 or more	40-50	45 (average)
Economic lifetime (Years)	30	30	30

source: Irena-ETSAP technology briefs

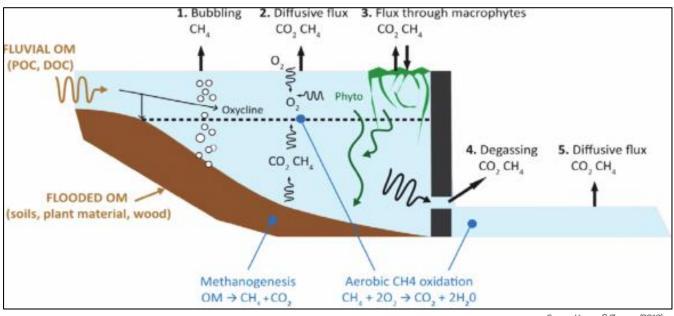
$$LCOE = P_{MWh} = \frac{\sum (Capital_t + O&M_t + Fuel_t + Carbon_t + D_t) * (1+r)^{-t}}{\sum MWh (1+r)^{-t}}$$


How much does it cost to produce electricity from hydropower plants

- LCOE- Levelized cost of electricity generation
- P_{MWh} = The constant lifetime remuneration to the supplier for electricity;
- MWh = The amount of electricity produced in MWh, assumed constant;

- (1+r)^{-t} = The discount factor for year t (reflecting payments to capital);
- Capital_t = Total capital construction costs in year t;
- O&M_t = Operation and maintenance costs in year t;
- Fuel_t = Fuel costs in year t;
- Carbon_t = Carbon costs in year t;
- D_t = Decommissioning and waste management costs in year t.

"It is a renewable energy source, so it is environmentally friendly"


 Hydropower is a component in a larger system – system thinking required

- Modification of primary watersheds
 - Change of landscape (inundation of large areas, deflection of rivers, creation of new infrastructure, loss of productive land/soils)
- Destruction of habitats & ecosystems threat to flora and fauna
- Changes in river flow regime
- Possible emissions of methane (degradation of flora/organic matter in stagnant water)
- Deterioration of water quality
 algae and oxygen depletion
- Sedimentation

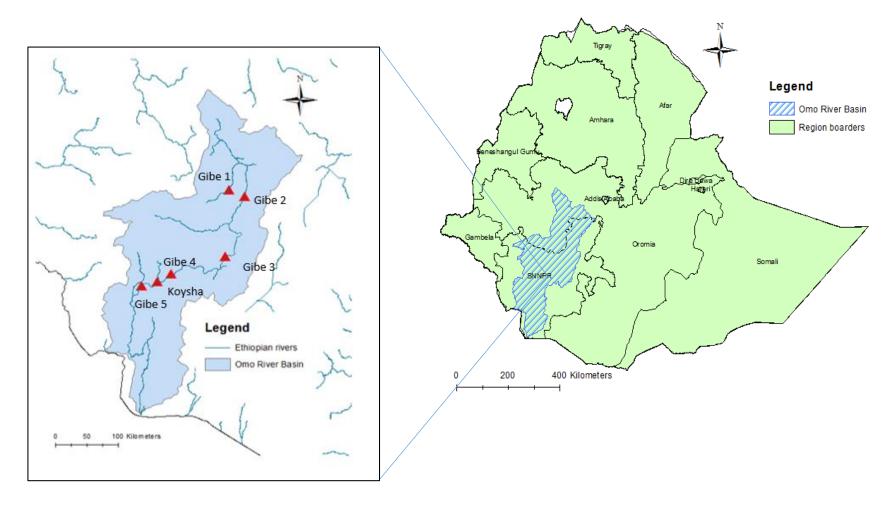
 storage capacity goes down,
 area of freshwater decreases &
 ecosystem impacts
- Reading recommendations:
 The greater common good

Source: Kumar & Sharma (2012)

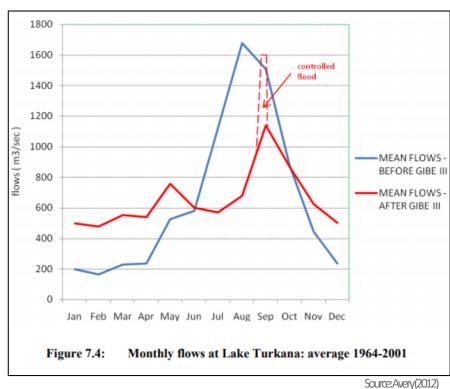
Flash floods – rapid flooding due to, among others, heavy precipitation and dam failure

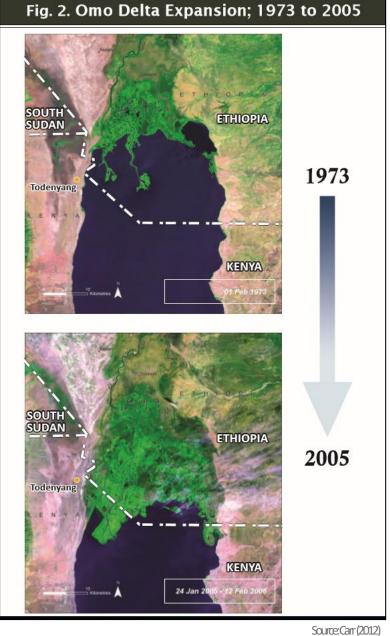
 Oroville Dam - California floods 2017

 Samarco dam holding waste from Iron ore mine - Brazil 2015


Source: Los Angeles Times (2017)

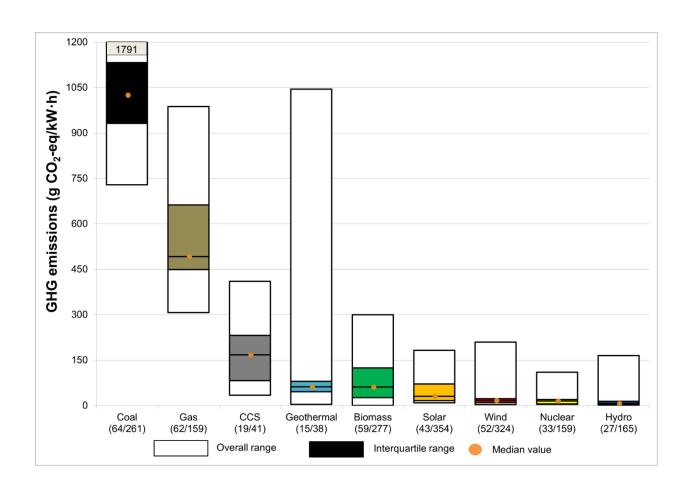
Source: Reuters (2017)


- Omo River Basin in Ethiopia
- Gibe cascading scheme – currently 3 power plants operation with more planned
- Major inflow to Lake Turkana, Kenya, in the south
- Gibe 3: 1,870 MW
 & 14,700 Mm3



Source: Sundin (2017)—adopted from Boulos (2017)

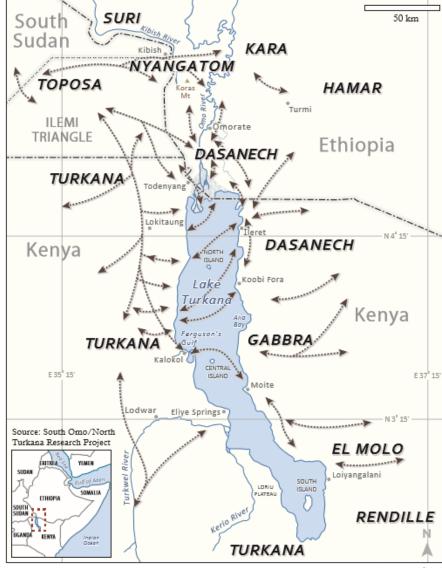
- Disruption in natural water balance
- Change in stream flow regime
- Change in Lake Turkana lake levels
- Change in river delta
- And other some not yet observed



- Comparison of GHG-emissions between technologies
- Hydropower not carbon neutral if considering its entire life cycle:
- Construction and maintenance (material, transport etc.)
- Reservoirs (methane gas as discussed earlier)



- Large contributor to electrifying people
- Generation possible to reflect the load
- Resettlement of local inhabitants
 - Political and cultural conflicts
 - Large dams in 20th century 40-80 million people worldwide
- Sometime no direct benefits for local communities, electricity usually transferred over long distances – accessibility
- Transboundary rivers 260 rivers in the world cross at least one boundary
- Multipurpose dams However, competition of water e.g. water for irrigation



Social concerns

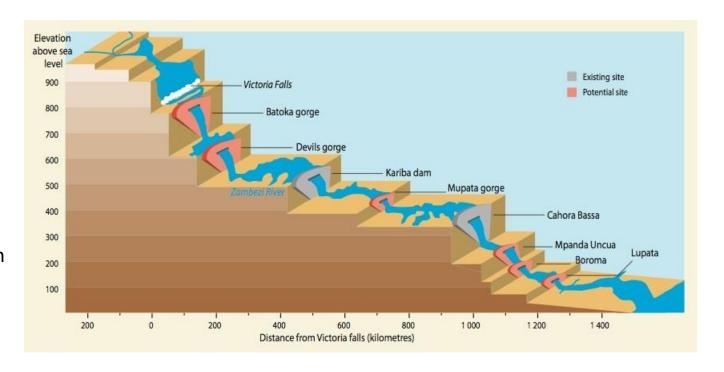
- Omo River Basin
- Indigenous
 people
 depending on
 seasonal
 flooding
 - Flood retreat
 cultivation

Fig. 6. Seasonal Dependence on Omo River and Lake Turkana Resources by Pastoral, Agropastoral and Fishing Villages

Source: Carr (2012)

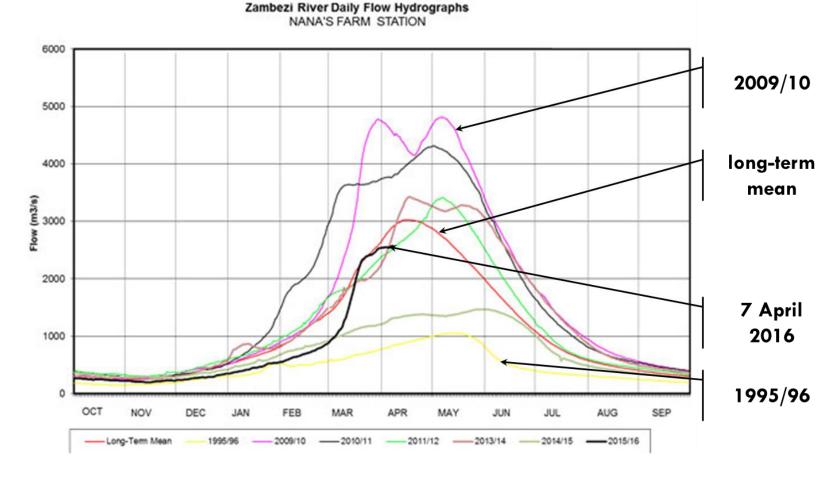
Social concerns

- Financial implications: rehabilitation of displacement, creating new job opportunities, loss of agricultural land, import of food etc.
- Grand Ethiopian Renaissance
 Dam Project Nile River
- When finished largest dam in Africa
- 6,000 MW 15,000 GWh/year
- Geopolitics Egypt example


Source:SaliniImpreglio

Hydropower- Climate Resilience

- Precipitation and Temperature affect water availability for hydro power
- If the future is
 - Dry: The energy system cannot depend only on Hydro
 - Wet: The energy system could take advantage of the increased water availability
- Our Electricity infrastructure needs climate proofing
- Example: Vulnerability of hydro-infrastructure development in the Zambezi River Basin
 - Extensive Hydropower expansion planned in the basin
 - The variation in the Zambezi river is highly variable
 - Potential for transboundary countries experiencing frequent blackouts or high electricity prices due to the loss of hydropower generation


Source: Zambezi River Basin Authority

Hydropower- Climate Resilience

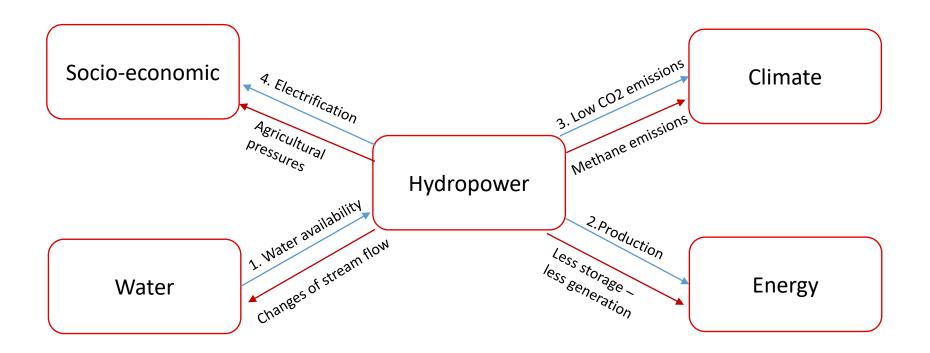
 Our Electricity infrastructure needs climate proofing

Source: Zambezi River Basin Authority

Conclusions

Conclusions

- Historic increase of hydropower capacity today largest renewable
- Untapped potential varying between continents
- Classification based on type, size, head, hydrological sequence and purpose of reservoir
- Different turbines reaction & impulse
- Load curve different rivers can meet demand at different times
- Cost of hydro is a function of the size and locations
- LCOE hydropower one of the lowest
- Pressure on the environment flooding, ecosystems
- GHG-emissions mainly from reservoirs and construction
- Pressure on the society resettlement, agricultural practises
- Hydropower vulnerable to climate change climate resilience



Key take away messages

Key messages

Effects or benefits or hydropower production

Diffuse or indirect implications

References

- IRENA, 2012. Renewable Energy Technologies: Cost Analysis Series. Volume 1: Power Sector. Issue 3/5. Hydropower. Available at: https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-hydropower.pdf
- IRENA, 2015. Hydropower Technology Brief. Available at: http://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP Tech Brief E06 Hydropower.pdf
- Boulos, M., 2017. Social, Economic and Environmental Impact of Alternative Scenarios of Development in the Omo River Catchment. Streamflow simulation using the physically based hydrological model TOPKAPI-ETH. Thesis at Institute of Environmental Engineering, Department of Hydrology and Water Resources Management, ETH Zurich, February 2017.
- Sundin, C, 2017. Exploring the water-energy nexus in the Omo River Basin A first step toward the development of an integrated hydrological-OSeMOSYS energy model. Thesis at Institute of Environmental Engineering, Department of Hydrology and Water Resources Management, ETH Zurich, June 2017.
- Avery, S., 2012. Lake Turkana & The Lower Omo: Hydrological Impact of Major Dam & Irrigation Development. African Studies Centre.
- Carr, C. (2012): Humanitarian Catastrophe and Regional Armed Conflict Brewing in the Transborder Region of Ethiopia, Kenya and South Sudan: The Proposed Gibe III Dam in Ethiopia, Africa Resources Working Group, December 2012, http://assets.survivalinternational.org/documents/1282/gibe-iii-dam-report-carr-arwg.pdf
- CESI and Mid-Day International Consulting Engineers, 2009. GIBE III Hydroelectric Project, Environmental and Social Impact. Ethiopian Electric Power Corporation (EEPCo).
- Kumar, A., and Sharma, A. P., 2012. Greenhouse Gas Emissions from Hydropower Reservoirs. Available at: https://www.researchgate.net/publication/236590025 Greenhouse Gas Emissions from Hydropower Reservoirs
- IEA, 2016. World Energy Outlook 2016.
- Los Angeles Times, 2017. 93 California dams need reassessment before next flood season, state agency says. Available at: http://www.latimes.com/local/lanow/la-me-In-dam-flood-season-reassessments-20170728-story.html
- Reuters, 2015. Brazil mine dam burst endangers water supply far downstream. Available at: http://www.reuters.com/article/us-brazil-damburst/brazil-mine-dam-burst-endangers-water-supply-far-downstream-idUSKCN0SY1Y920151109
- World Energy Council, 2016. World Energy Resources Hydropower 2016. Available at: https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources Hydropower 2016.pdf
- IHA, 2016. Hydropower status report 2016. International hydropower association limited.

ngelog and attribution

Date	Author	Reviewer	Reviser
2017-10-10	Caroline Sundin	Mark Howells	Caroline Sundin

To correctly reference this work, please use the following:

Sundin, C., 2017. Hydropower: Social, environmental and economic concerns, OpTIMUS.community. Available at: http://www.osemosys.org/understanding-the-energy-system.html. [Access date]