

Gas: Social, environmental and economic concerns

Francesco Gardumi

gardumi@kth.se

Introductory lecture – Energy commodities and technologies

This work by OpTIMUS.community is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Commodity: global trends

- > Demand
- > Supply
- ➢ Resources

Demand

World gas demand by sector in IEA New Policies Scenario

Source: IEA World Energy Outlook 2016.

Supply

Gas production (billion cubic metres)

Gas consumption (billion cubic metres)

Source: BP Statistical review of World Energy 2017.

Conventional resources:

- NG: mixture of hydrocarbons containing mostly methane (c.ca 90% mole), ethane (5%), propane and butane. Raw gas can contain significant quantity of sulphur and must be treated.
- LNG: Natural Gas that has been liquefied for ease of storage and transport. The chain includes liquefaction facilities, transport usually in ships, re-gasification facilities.

Unconventional resources:

- Tight gas: natural gas produced from reservoir rocks with very low permeability, requiring intensive hydraulic fracturing (*fracking*) for economic production. Mostly US.
- Shale gas: natural gas found trapped in shale formations (clastic sedimentary rocks). Produced by fracking. Biggest production currently in US. Biggest reservoirs estimated in China.
- Coalbed methane: natural gas extracted from coal beds. Produced mainly in US, Canada, Australia.

Resources

		Conventional		Unconventional			Total	
) L			Tight gas	Shale gas	Coalbed methane	Sub-total	Resources	Proven reserves
<u>C</u>	OECD	78	24	81	16	121	199	22
; (t	Americas	51	11	55	7	73	124	14
ě	Europe	17	4	13	2	19	37	4
ourc	Asia Oceania	10	8	13	8	29	39	4
	Non-OECD	356	57	138	34	229	585	195
es B	E. Europe/Eurasia	138	11	15	20	46	184	74
	Asia	35	13	40	13	66	101	16
jà,	Middle East	104	9	4	-	13	117	80
U	Africa	51	10	39	0	49	100	17
	Latin America	28	15	40	-	55	83	8
	World	434	81	218	50	349	784	217

Proven reserves = 90%probability to be extracted profitably

Reserves to Production ratio (R/P) of around 50 years

Source: IEA World Energy Outlook 2016.

Technologies in the gas chain

- > Extraction
- Transportation and storage
- Combustion-based power plants
- Economic, Environmental and Social concerns

Sample Reference Energy System

Extraction

Processes - conventional gas:

- Conventional wells: lately case drilling is used
- Deepwater production: made possible by floating platforms. 3000 m reached in 2005.

Processes - unconventional gas:

• Hydraulic fracturing: used for tight gas, shale gas and coalbed methane. It consists in pumping highpressure liquid in the rocks to fracture them and ease the gas flow. Coupled with horizontal wells.

Key characteristics					
Conventional gas					
Capital cost	5.3-63.7 \$/boe				
VOM cost	3.2-8.3 \$/boe				
Recovery factor	70-80%				
Energy use	0.8-2.3 GJ/toe				
CO2 Em. factor	64.9-273.6 ton/ktoe				
Unconventional gas					
Capital cost	-				
VOM cost	6.6-19.7 \$/GJ				
Recovery factor	10-70%				
Energy use	20-30% of produced				
CO2 Em. factor	9.3-15 gCO2/MJ				

Transportation and storage

- Pipelines: used for short to medium distances (including distribution to final users) and large volumes.
- LNG shipping: for long distances and large volumes. This technology also includes liquefaction and regasification facilities.

Storage

Natural gas is stored for commercial or energy security reasons.

- Underground storage: in depleted gas reservoirs or salt caverns.
- On-board LNG fleets.

Key characteristics					
Pipeline					
Capital cost	194-226 M\$/km				
Energy use	1.8-2.7% of transported				
LNG liquefaction					
Capital cost	2.9-3.8 \$/MMBtu				
VOM and FOM cost	10500 \$/ton				
Natural gas losses	15%				
LNG shipping					
Capital cost	245 M\$/150000 m3				
Energy use	Diesel, NG, HFO				
CO2 Em. factor	Depends on fuel				
LNG re-gasification					
Capital cost	45-75 \$/ton				

Combustion-based power plants

Open Cycle Gas Turbines (OCGTs):

Typical size between 10 and 300 MW. Fast ramping, usually used for peak generation. Also fed with oil products.

Combined Cycle Gas Turbines (CCGTs):

One unit consists in a Gas Turbine + a Heat Recovery Steam Generator (HRSG) with a Steam Turbine. Power plants usually combine 2 or 4 of these units. Largely used and efficient, flexible, but not as much as OCGTs. Used for both base and peak generation.

Key characteristics					
OCGTs					
Capital cost	900 \$/kW				
VOM and FOM cost	36 \$/kW/a				
Lifetime	30 years				
Efficiency	35-42%				
CO2 Em. factor	480-575 kg/MWh				
CCGTs					
Capital cost	1100 \$/kW				
VOM and FOM cost	44 \$/kW/a				
Lifetime	30 years				
Efficiency	52-60%				
CO2 Em. factor	340-400 kg/MWh				

Economic concerns

Are prices of oil and gas still coupled?

Spot prices of NG on selected markets compared to LNG and Oil prices [US \$/million Btu]

Economic concerns

Greater geopolitical concerns about the role of natural gas in the international relationships:

- Competition between 1) the SouthStream project launched by Gazprom and initially supported by ENI (now abandoned), bringing gas from Russia, and 2) Nabucco, backed by several EU Member States, bringing gas from Iran and Azerbaijan.
- New reservoir discovered offshore Israel Cyprus Egypt Lebanon Syria.
 How is it going to affect the relations and diplomacy between the countries?
- Just when the revolution came in 2011, Syria had approved a pipeline from Iran, while rejecting one from Qatar through Saudi Arabia.

Economic concerns

In addition, big discussion ongoing in some markets (e.g. Europe) about the role of **NG-fired generation in the power system** in the next decades:

Increasing penetration of renewables causes generation to be intermittent

Gas-fired power plants are fast ramping and will be called to **balance intermittency**

This turns to be **economically unsustainable** for the operators of the power plants

Environmental and social concerns

Environmental concerns:

- The combustion of gas (e.g. for electricity generation or transportation) is again responsible for emissions at local, regional and global level, such as CO2, NOx, SOx;
- In addition, Methane (CH4) is a GHG with 20 times stronger effect than CO2! Any direct emission of CH4 from gas leaks through the production chain contributes to the global warming.

Social concerns:

• Similar concerns to those for Oil apply.

Conclusions

- There is high demand for gas and it is expected to increase, especially in the power sector;
- Gas is less CO2 intensive than oil and coal. Replacement of the latter with gas will decrease the pressure of GHGs emissions;
- Gas-fired generation is flexible enough to provide backup for large shares of variable renewables in the electricity supply;
- Still, gas shares most of the economic, environmental and social concerns of oil.

References and reading material

IEA, World Energy Outlook 2016;

British Petroleum, Statistical Review of World Energy 2017. Available at: <u>https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf</u>;

IEA-ETSAP, Energy Technology Data Source. Available at: <u>https://iea-etsap.org/index.php/energy-technology-data</u>;

How natural gas could be a geopolitical game-changer in the Mideast: <u>https://www.youtube.com/watch?v=pay5dKYvXGU</u>

Profit Pollution and Deception BP and the Oil Spill: https://www.youtube.com/watch?v=8zGFvzMMO9w&t=706s

Sources for the pictures

Gasification: <u>http://www.gbgasifired.com/model.html</u>

Extraction: http://www.energytrendsinsider.com/research/coal/coal-mining-and-processing/

Refinery: http://stillwaterassociates.com/crack-spread-a-quick-and-dirty-indicator-of-refining-profitability/

Biomass: <u>http://inhabitat.com/tag/biomass/</u>

Renewables: <u>http://www.topnews.in/wind-water-and-sun-beat-biofuels-nuclear-and-coal-clean-energy-297577</u>

Uranium: <u>http://unitednuclear.com/index.php?main_page=product_info&products_id=1028</u>

Fossil: <u>https://www.slideshare.net/MMoiraWhitehouse/fossil-fuels-teach</u>

Combustion based power plants: <u>https://en.wikipedia.org/wiki/Battersea Power Station in popular culture</u>

Uranium enrichment: http://energyfromthorium.com/2010/08/06/loveswu1/

Sources for the pictures

Residential: <u>http://jhsimpson.com/residential/</u>

Transport: <u>https://se.123rf.com/clipart-vektorer/transport.html</u>

Industry: <u>http://indianexpress.com/article/business/economy/factory-output-grows-2-per-cent-in-february-after-3-months-of-contraction/</u>

Commercial: http://www.alfalaval.com/industries/refrigeration/commercial-refrigeration/

Transportation of fuel: <u>http://www.zerohedge.com/news/2017-06-23/demand-oil-pipeline-capacity-hits-6-year-low</u>

Transportation of biomass: <u>http://www.forestenergy.ie/transportation-studies.php</u>

Transportation of oil products: <u>http://www.picquery.com/gasoline</u>truck_WXRZaplkZ2eaRVifu*zjqPAvrMnnxmBsTSgdn*BBBKk/

Decentralized energy supply: <u>http://trayamtechnologies.com/solar-pv-roof-top-and-ground-mounting/</u>

Decentralized energy supply2: <u>http://www.sunwindenergy.com/photovoltaics/38-mw-rooftop-pv-system-completed-uk</u>

Changelog and attribution

Date	Author	Reviewer	Reviser
2017-09-23	Francesco Gardumi	Francesco Fuso Nerini	Francesco Gardumi

To correctly reference this work, please use the following:

Gardumi, F., 2017. Gas: Social, environmental and economic concerns, OpTIMUS.community. Available at: <u>http://www.osemosys.org/understanding-the-energy-system.html</u>. [Access date]