

From energy to electricity system analysis

- The electricity system is a heavily intertwined subpart of the comprehensive energy system
- We focus this training on modelling the electricity system,
- More specifically: finding the least-cost sustainable electricity system development.

Electricity system

Complex system involving: extraction and/or import facility, power plants, transmission and distribution lines, storage, transport, industrial uses, residential uses, transportation, and others.

Elements of an electricity system model

The complexity of electricity systems requires a well-organized **model** structure.

Demand

The demand for electricity has to be met instantly when it arises.

Where does demand come from?

- ✓ Industry
- ✓ Tertiary
- ✓ Residential
- ✓ And others

Why not simply aim to satisfy the average annual demand?

- ✓ Consumers activities are different during the day/year.
- ✓ Accordingly, electricity demand varies over time.
- Average or total annual demand can not capture the daily and yearly variations.

Time slices

- All characteristics of the system vary over different time scales (days, weeks, seasons). Think for instance of:
 - Electricity demand;
 - Rainfall patterns;
 - Irrigation needs and duration of the daylight.
- The year is therefore broken down into representative pieces called time slices.

Both demand and supply (especially intermittent renewables!) are therefore studied at the scale of the individual time slices

Why are time slices important?

Planning the electricity system

Type and schedule of new capacity additions for an uncertain future

Levelised Cost of Electricity (LCOE)

Investment and fixed costs

Variable and fuel costs

Decommissioning

$$LCOE = \frac{\left(\frac{INV \times CRF + FOM}{PLF}\right)}{8760} + VOM + \frac{P_{FUEL}}{\eta} + \frac{\left(\frac{DECOM}{PLF} \times (1+i)^{-(PLT+T)}\right)}{8760}$$

LCOE, in \$/kWh of electricity output

INV – Overnight investment costs per kW of installed capacity, \$/kW_e

CRF – Capital recovery factor (annuity)

DECOM - Decommissioning costs per kW of installed capacity, \$/kW_e

FOM - Fix operating and maintenance costs per year, \$/kW_e

VOM Variable operating costs, \$/kWh

P_{FUEL} - Fuel price per kWh, in \$/kWh input

PLF - Plant factor, i.e., full load hours of plant operation per year, fraction of year

PLT - Plant life time, years

η - Plant thermal efficiency, in %

i - Discount rate, in %

Is LCoE the only decision criterion?

Technologies compete to gain a share in the energy supply, based on their technoeconomic characteristics (e.g. Levelized Cost of Electricity), but also on a number of other constraints – e.g. resource availability, intermittency of production, ramping rates, etc.

Coal	Natural Gas	Nuclear	Hydro	Wind	Solar PV	Biomass				
IT DEPENDS ON THE LOCATION, ON GEOPOLITICAL CONSTRAINTS, ON CLIMATE CONDITIONS										
		Coal Gas	Coal Gas Nuclear	Gas Nuclear Hydro	Coal Gas Nuclear Hydro Wind	Gas Nuclear Hydro Wind Solar PV				

Less favourable

More favourable

Basic technology characterization

Expansion / replacement options	ссст	GT	Coal PP	Coal CCS	Diesel	Hydro	Wind PP	Solar PV	Solar thermal (CSP)	Nuclear
Technical data		-		-		•	-	-	-	
Unit size (MWe)	400	50	1 000	1 000	25	150	3	2	100	1 000
Efficiency (%)	54	34	39	35	30	-		-	-	35
Fuel	Gas/LFO	Gas / LFO	Coal	Coal	Diesel	-		-	-	UO ₂
Load factor %	60	20	80	80	8	90	35	25	40	85
Operational life time (years)	30	30	40	40	20	50	20	20	25	50
Construction time (years)	3	2	4	4	1	4	2	1	2	6
Economic data						•				
Investment cost (\$/kW overnight)	950	500	2 200	4 100	450	2 000	1 600	2 500	4 500	5 000
Fixed O&M cost (\$/kW/yr)	15.4	7	28.15	52	7	12	25	20	40	63
Variable O&M cost excl. fuel (\$/MWh)	3.6	12	5	9	8	1.5	1.2	0.8	2	2.1
Fuel costs (\$/GJ)	6	6	3	3	12					2
Fuel costs (\$/MWh)	21.6	21.6	10.8	10.8	43.2	0	0	0	0	7.2
Interest/discount	5	% per year								
Calculation of LCOE										
Annuity	0.0651	0.0651	0.0583	0.0583	0.0802	0.0548	0.0802	0.0802	0.0710	0.0548
Investment	0.0118	0.0186	0.0183	0.0341	0.0515	0.0139	0.0419	0.0916	0.0911	0.0368
Fix O&M	0.0029	0.0040	0.0040	0.0074	0.0100	0.0015	0.0082	0.0091	0.0114	0.0085
Varibale O&M	0.0036	0.0120	0.0050	0.0090	0.0080	0.0015	0.0012	0.0008	0.002	0.0021
Fuel cost	0.0040	0.0064	0.0028	0.0031	0.0144	0	0	0	0	0.0021
LCOE \$/kWh	0.0223	0.0409	0.0301	0.0536	0.0839	0.0169	0.0512	0.1015	0.1045	0.0494
LCOE \$/MWh	22.3	40.9	30.1	53.6	83.9	16.9	51.2	101.5	104.5	49.4

Exercise 2

Comment in 5 bullet points the graphs shown in slide 27 of this presentation.

Answer the following guiding questions:

- Which are the main features of each of the technologies plotted?
- Why one needs to look at LCOE to compare technologies and decide which one minimizes costs?
- Besides what is included in the LCoE calculations, what other criteria need to be taken into account select technologies for an electricity system?

LCOE with realistic load factors

To correctly reference this work, please use the following:

OpTIMUS.community, 2017. Electricity system modelling, OpTIMUS.community. Available at: http://www.osemosys.org/understanding-the-energy-system.html. [Access date]