Electricity system modelling

This work by OpTIMUS.community is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
From energy to electricity system analysis

- The electricity system is a heavily intertwined subpart of the comprehensive energy system.
- We focus this training on modelling the electricity system,
- More specifically: finding the least-cost sustainable electricity system development.
Electricity system

Complex system involving: extraction and/or import facility, power plants, transmission and distribution lines, storage, transport, industrial uses, residential uses, transportation, and others.
Elements of an electricity system model

The complexity of electricity systems requires a well-organized model structure.
Demand

The demand for electricity has to be met instantly when it arises.

Where does demand come from?
- Industry
- Tertiary
- Residential
- And others

Why not simply aim to satisfy the average annual demand?
- Consumers activities are different during the day/year.
- Accordingly, electricity demand varies over time.
- Average or total annual demand can not capture the daily and yearly variations.
Time slices

- All characteristics of the system vary over different time scales (days, weeks, seasons). Think for instance of:
 - Electricity demand;
 - Rainfall patterns;
 - Irrigation needs and duration of the daylight.
- The year is therefore broken down into representative pieces called **time slices**.

Both demand and supply (especially intermittent renewables!) are therefore studied at the scale of the individual time slices.
Why are time slices important?

Electricity (load curve)

- Electricity Demand (MW)
- Availability (%)

Water resources (Availability)

Sample of California Hourly Demand and Solar and Wind Production

- Electricity Demand
- Solar Production
- Wind Production

- Hour of Day

0 8760

Thursday, January 31, 2013
Planning the electricity system

Type and schedule of new capacity additions for an uncertain future

- Total system capacity requirements
- Demand for new capacities
- Demand projection
- Existing system capacity

MW

Time
Levelised Cost of Electricity (LCOE)

\[
\text{LCOE} = \left(\frac{\text{INV} \times \text{CRF} + \text{FOM}}{\text{PLF}} \right) \times \frac{8760}{\eta} + \text{VOM} + \frac{\text{P}_{\text{FUEL}}}{\eta} + \left(\frac{\text{DECOM} \times (1 + i)^{-\text{PLF} + \text{T}}}{8760} \right)
\]

LCOE, in $/kWh of electricity output

- **INV**: Overnight investment costs per kW of installed capacity, $/kW_e
- **CRF**: Capital recovery factor (annuity)
- **DECOM**: Decommissioning costs per kW of installed capacity, $/kW_e
- **FOM**: Fix operating and maintenance costs per year, $/kW_e
- **VOM**: Variable operating costs, $/kWh
- **P_{FUEL}**: Fuel price per kWh, in $/kWh input
- **PLF**: Plant factor, i.e., full load hours of plant operation per year, fraction of year
- **PLT**: Plant life time, years
- **\(\eta \)**: Plant thermal efficiency, in %
- **i**: Discount rate, in %
Is LCoE the only decision criterion?

Technologies compete to gain a share in the energy supply, based on their techno-economic characteristics (e.g. **Levelized Cost of Electricity**), but also on a number of other constraints – e.g. resource availability, intermittency of production, ramping rates, etc.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Coal</th>
<th>Natural Gas</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Wind</th>
<th>Solar PV</th>
<th>Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IT DEPENDS ON THE LOCATION, ON GEOPOLITICAL CONSTRAINTS, ON CLIMATE CONDITIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermittency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramping rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More favourable Less favourable
Basic technology characterization

<table>
<thead>
<tr>
<th>Expansion / replacement options</th>
<th>CCGT</th>
<th>GT</th>
<th>Coal PP</th>
<th>Coal CCS</th>
<th>Diesel</th>
<th>Hydro</th>
<th>Wind PP</th>
<th>Solar PV</th>
<th>Solar thermal (CSP)</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical data</td>
<td></td>
</tr>
<tr>
<td>Unit size (MWe)</td>
<td>400</td>
<td>50</td>
<td>1 000</td>
<td>1 000</td>
<td>25</td>
<td>150</td>
<td>3</td>
<td>2</td>
<td>100</td>
<td>1 000</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>54</td>
<td>34</td>
<td>39</td>
<td>35</td>
<td>30</td>
<td>-</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>35</td>
</tr>
<tr>
<td>Fuel</td>
<td>Gas/LFO</td>
<td>Gas / LFO</td>
<td>Coal</td>
<td>Coal</td>
<td>Diesel</td>
<td>-</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>UO$_2$</td>
</tr>
<tr>
<td>Load factor %</td>
<td>60</td>
<td>20</td>
<td>80</td>
<td>80</td>
<td>8</td>
<td>90</td>
<td>35</td>
<td>25</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>Operational life time (years)</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Construction time (years)</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Economic data</td>
<td></td>
</tr>
<tr>
<td>Investment cost ($/kW overnight)</td>
<td>950</td>
<td>500</td>
<td>2 200</td>
<td>4 100</td>
<td>450</td>
<td>2 000</td>
<td>1 600</td>
<td>2 500</td>
<td>4 500</td>
<td>5 000</td>
</tr>
<tr>
<td>Fixed O&M cost ($/kW/yr)</td>
<td>15.4</td>
<td>7</td>
<td>28.15</td>
<td>52</td>
<td>7</td>
<td>12</td>
<td>25</td>
<td>20</td>
<td>40</td>
<td>63</td>
</tr>
<tr>
<td>Variable O&M cost excl. fuel ($/MWh)</td>
<td>3.6</td>
<td>12</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>1.5</td>
<td>1.2</td>
<td>0.8</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>Fuel costs ($/GJ)</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fuel costs ($/MWh)</td>
<td>21.6</td>
<td>21.6</td>
<td>10.8</td>
<td>10.8</td>
<td>43.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.2</td>
</tr>
<tr>
<td>Interest/discount</td>
<td>5</td>
<td></td>
<td>% per year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculation of LCOE</td>
<td></td>
</tr>
<tr>
<td>Annuity</td>
<td>0.0651</td>
<td>0.0651</td>
<td>0.0583</td>
<td>0.0583</td>
<td>0.0802</td>
<td>0.0548</td>
<td>0.0802</td>
<td>0.0802</td>
<td>0.0710</td>
<td>0.0548</td>
</tr>
<tr>
<td>Investment</td>
<td>0.0118</td>
<td>0.0186</td>
<td>0.0183</td>
<td>0.0341</td>
<td>0.0515</td>
<td>0.0139</td>
<td>0.0419</td>
<td>0.0916</td>
<td>0.0911</td>
<td>0.0368</td>
</tr>
<tr>
<td>Fix O&M</td>
<td>0.0029</td>
<td>0.0040</td>
<td>0.0040</td>
<td>0.0074</td>
<td>0.0100</td>
<td>0.0015</td>
<td>0.0082</td>
<td>0.0091</td>
<td>0.0114</td>
<td>0.0085</td>
</tr>
<tr>
<td>Varibale O&M</td>
<td>0.0036</td>
<td>0.0120</td>
<td>0.0050</td>
<td>0.0090</td>
<td>0.0080</td>
<td>0.0015</td>
<td>0.0012</td>
<td>0.0008</td>
<td>0.002</td>
<td>0.0021</td>
</tr>
<tr>
<td>Fuel cost</td>
<td>0.0040</td>
<td>0.0064</td>
<td>0.0028</td>
<td>0.0031</td>
<td>0.0144</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0021</td>
</tr>
<tr>
<td>LCOE $/kWh</td>
<td>0.0223</td>
<td>0.0409</td>
<td>0.0301</td>
<td>0.0536</td>
<td>0.0839</td>
<td>0.0169</td>
<td>0.0512</td>
<td>0.1015</td>
<td>0.1045</td>
<td>0.0494</td>
</tr>
<tr>
<td>LCOE $/MWh</td>
<td>22.3</td>
<td>40.9</td>
<td>30.1</td>
<td>53.6</td>
<td>83.9</td>
<td>16.9</td>
<td>51.2</td>
<td>101.5</td>
<td>104.5</td>
<td>49.4</td>
</tr>
</tbody>
</table>
Exercise 2

Comment in 5 bullet points the graphs shown in slide 27 of this presentation.

Answer the following guiding questions:

- Which are the main features of each of the technologies plotted?
- Why one needs to look at LCOE to compare technologies and decide which one minimizes costs?
- Besides what is included in the LCoE calculations, what other criteria need to be taken into account select technologies for an electricity system?
LCOE with realistic load factors

![Graph showing LCOE generating costs per MWh for different sources: CCGT, GT, Coal PP, Diesel, Hydro, Wind, Solar PV, CSP, and Nuclear. The costs range from 0.0 to 12.0 $/MWh. Diesel has the highest cost, followed by Solar PV and CSP. CCGT and Coal PP have the lowest costs.]
To correctly reference this work, please use the following: