
This is Google's cache of http://www.ibm.com/developerworks/linux/library/l-glpk3/index.html. It is a
snapshot of the page as it appeared on 20 Jan 2010 05:49:31 GMT. The current page could have changed
in the meantime. Learn more

Text-only versionThese search terms are highlighted: the gnu linear programming kit part 3

The GNU Linear Programming Kit, Part 3:
Advanced problems and elegant solutions
Maximizing the profitability of perfume and building a better basketball team
Rodrigo Ceron (rceron@br.ibm.com), Staff Software Engineer, IBM, Software Group
Summary: The GNU Linear Programming Kit (GLPK) is a powerful, proven tool for solving
numeric problems with multiple constraints. This article, the third in a three-part series, uses GLPK
and the glpsol client utility with the GNU MathProg language to solve a perfume production problem
and a basketball lineup problem.
Date: 14 Nov 2006
Level: Intermediate
Activity: 4654 views
Comments:
This article is the third in a three-part series on using the GNU Linear Programming Kit. For an
introduction to GLPK, read the first installment in the series, "The GNU Linear Programming Kit, Part
1: Introduction to linear optimization."
[All company and product names given in the example problems are fictional. -Ed.]
Brute production process
This problem comes from Operations Research: Applications and Algorithms, 4th Edition, by Wayne
L. Winston (Thomson, 2004); see Resources below for a link.

Rylon Corporation manufactures Brute and Chanelle perfumes. The raw material needed
to manufacture each type of perfume can be purchased for $3 per pound. Processing one
pound of raw material requires 1 hour of laboratory time. Each pound of processed raw
material yields 3 ounces of Regular Brute Perfume and 4 ounces of Regular Chanelle
Perfume. Regular Brute can be sold for $7/ounce and Regular Chanelle for $6/ounce.
Rylon also has the option of further processing Regular Brute and Regular Chanelle to
produce Luxury Brute, sold at $18/ounce, and Luxury Chanelle, sold at $14/ounce. Each
ounce of Regular Brute processed further requires an additional 3 hours of lab time and $4
processing cost and yields 1 ounce of Luxury Brute. Each ounce of regular Chanelle
processed further requires an additional 2 hours of lab time and $4 processing cost and
yields 1 ounce of Luxury Chanelle. Each year, Rylon has 6,000 hours of lab time available
and can purchase up to 4,000 pounds of raw material. Maximize Rylon's profit.

To summarize the important information about the problem:
� Rylon Corporation manufactures Brute and Chanelle perfumes.

Page 1 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

� Raw material costs $3 per lb.
� Processing 1 lb. of raw material takes 1 hr. of laboratory time.
� Each lb. of raw material yields 3 oz. of Regular Brute Perfume and 4 oz. of Regular Chanelle
Perfume.

� Regular Brute sells for $7/oz. and Regular Chanelle for $6/oz.
� Reprocessing yields Luxury Brute, sold at $18/oz., and Luxury Chanelle, sold at $14/oz.
� Each oz. of Regular Brute processed further costs an additional 3 hrs. of lab time and $4 in
processing cost and yields 1 oz. of Luxury Brute.

� Each oz. of regular Chanelle processed further costs an additional 2 hrs. of lab time and $4 of
processing cost and yields 1 oz. of Luxury Chanelle.

� Yearly constraints: 6,000 hrs. of lab time available, and Rylon can purchase up to 4,000 lbs. of
raw material.

Before modeling this problem, let's look at the transformation from raw materials to end products:

Figure 1. Overview of Rylon production

Figure 1 shows that all the raw material is transformed into intermediate products (represented by the
intermediate balloons in the figure). Take the upper intermediate balloon as an example representing
the Regular Brute product. Some of the Regular Brute may be reprocessed to generate the luxury
Brute, so the balloon is split in two: the Regular Brute that will be sold (green) and the Regular Brute
that will be reprocessed to make Luxury Brute (blue). The same applies to the Chanelle. Note that only
the blue part of those two intermediate balloons (and all of the blue part) will be reprocessed.

Modeling the Rylon problem
The decision variables for this particular problem need to cover all the perfumes and materials:
� x1: ounces of Regular Brute sold annually

� x2: ounces of Luxury Brute sold annually
� x3: ounces of Regular Chanelle sold annually
� x4: ounces of Luxury Chanelle sold annually
� x5: pounds of raw material purchased annually

The objective function can be written to maximize the profit in terms of these decision variables:

The trivial constraints from the problem are related to the laboratory hours available to process the

Page 2 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

materials. Rylon needs time to process the amount of raw material it buys, which is given by x5. Time
is also needed to reprocess regular Brute and Chanelle into the luxury Brute and Chanelle, so the total
time will depend on x2 and x4 in addition to x5:

The maximum amount of raw material Rylon can buy is also a constraint:

As always, the sign constraints are important:

If this model is converted to GNU MathProg and solved by glpsol, the solver will report that the
problem is unbounded: the more Rylon produces, the bigger its profit is. Hey, this sounds like a good
business if you want to move to the Caribbean Islands, but common sense says it can't happen. So,
where's the flaw?
The raw material needs to be bound to the Regular Brute and Chanelle, and those two need to be
bound to their Luxury versions. How can two variables be bound? The conversion of raw material to
Chanelle and Brute is not 1 pound to one ounce, as you can see in the problem description. Each pound
of raw material generates three ounces of regular Brute and four ounces of regular Chanelle (seven
ounces of perfume in total). Think of this transformation as a black box. If you put one pound of raw
material into the black box, you'll get exactly 3 ounces of regular Brute and four ounces of regular
Chanelle out of the box. If you have processed N pounds of raw material, the upper intermediate
balloon in Figure 1must be 3N. This is Regular plus Luxury Brute.
Remember that the transformation of one ounce of Regular perfume yields one ounce of Luxury
perfume for both Brute and Chanelle. In addition, the lower intermediate balloon for Regular and
Luxury Chanelle is 4N ounces total. Rylon cannot, say, use N pounds of raw material to create 2N
ounces of Regular plus Luxury Brute and 5N of Regular plus Luxury Chanelle. The 1-to-3 Brute
transformation and 1-to-4 Chanelle transformation must both hold, regardless of the Regular-to-
Luxury ratios within the Brute and Chanelle production yields.
The amount of perfume produced must have been generated from the raw material. If the equilibrium
is not enforced, the results will be wrong! Hence the following constraint:

This equation says that all the Brute produced (which is the Regular Brute for sale plus the Regular
Brute for reprocessing) divided by 3 must equal one unit of raw material. Does that sound correct? The
problem says that processing one unit of raw material (one pound) generates 3 units (3 ounces) of
Regular Brute, and we know that 1 unit of Regular Brute may be transformed to 1 ounce of its Luxury
line. Note here again that all the Regular and Luxury units (ounces) of Brute need to be exactly 3 times
greater than the units of raw material processed. So, this constraint seems to be okay. Because GLPK
requires that all decision variables be on the same side of the inequality, we write the previous
equation as follows:

Page 3 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

Similarly, we have that:

Does that seem right? One unit of raw material generates 4 ounces of Chanelle (which is Regular plus
Luxury), so this seems okay too. For GLPK, the equation is written with all the decision variables on
the left:

Now, the problem is complete. Let's write a GNU MathProg program for it.

GNU MathProg solution for Rylon's problem
The following code for glpsol solves the Rylon problem. (The line numbers are not part of the code
itself. I've added them to make it easier to reference the code later.)

Listing 1. Rylon production process solution
 1 #
 2 # Rylon production proccess
 3 #
 4 # This finds the optimal solution for maximizing Rylon's profit
 5 #
 6 /* sets */
 7 set PROD;
 8
 9 /* parameters */
10 param Rev{i in PROD};
11 param Cost{i in PROD};
12 param Labh{i in PROD};
13
14 var x{i in PROD} >= 0; /*x1: No. of oz of Regular Brute
15 x2: No. of oz of Luxury Brute
16 x3: No. of oz of Regular Chanelle
17 x4: No. of oz of Luxury Chanelle
18 x5: No. of lbs of raw material */
19
20 maximize z: sum{i in PROD} (Rev[i]*x[i] - Cost[i]*x[i]);
21
22 /* Constraints */
23 s.t. raw: x['raw'] <= 4000;
24 s.t. time: sum{i in PROD} Labh[i]*x[i] <= 6000;
25 s.t. mass1: x['rb'] + x['lb'] - 3*x['raw'] = 0;
26 s.t. mass2: x['rc'] + x['lc'] - 4*x['raw'] = 0;
27
28 data;
29 set PROD:= rb lb rc lc raw;
30
31 param Rev:=
32 rb 7
33 lb 18

Page 4 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

You should recognize all the declarations of the previous code, but I'll review them quickly for the
sake of completeness.
Line 7 declares a set named PROD, whose elements are the Brute and Chanelle products. Line 29
defines the products. The four abbreviations stand for Regular Brute, Luxury Brute, Regular Chanelle,
and Luxury Chanelle, and the last element is the raw material. Raw material is listed as a product so
that all the decision variables can be in one set.
Lines 10, 11, and 12 declare the parameters: revenue, cost, and lab hours. The parameters are defined
on lines 31 through 50. The lab hours say how long it takes to process a pound of raw material and to
reprocess the Regular Brute and Chanelle into their Luxury versions (per ounce). The cost consists of
the cost of the raw materials per pound and the cost of reprocessing the Regular Brute and Chanelle
per ounce.
Line 14 defines the decision variables, a five-element array on the PROD set.
Line 20 defines the objective function, which is just Rylon's profit (revenue - costs).
Finally, lines 23 through 26 declare the problem's constraints, discussed above.
Listing 2 shows the output:

Listing 2. The Rylon report from glpsol

34 rc 6
35 lc 14
36 raw 0;
37
38 param Labh:=
39 rb 0
40 lb 3
41 rc 0
42 lc 2
43 raw 1;
44
45 param Cost:=
46 rb 0
47 lb 4
48 rc 0
49 lc 4
50 raw 3;
51
52 end;

Problem: brute
Rows: 5
Columns: 5
Non-zeros: 15
Status: OPTIMAL
Objective: z = 172666.6667 (MAXimum)

 No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 z B 172667
 2 raw NU 4000 4000 39.6667
 3 time NU 6000 6000 2.33333
 4 mass1 NS 0 -0 = 7
 5 mass2 NS 0 -0 = 6

 No. Column name St Activity Lower bound Upper bound Marginal

Page 5 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

The first section shows that the solution is optimal and that the objective function equals
approximately 172667. The third section has the values of each decision variable. The second section
shows the constraints. Note that the mass conservation constraints always have an = sign in one of the
bounds columns. Their marginal values can't be analyzed, because it makes no sense to have a
marginal value with equality constraints. Do you agree? Send me a note if you have a different
opinion.
Let's make a brief, common-sense analysis here. Rylon has processed 4,000 pounds of raw material.
According to the mass conservation (the black box that transforms raw material into Chanelle and
Brute), we need to enforce that N pounds of raw material produce 3N ounces of Brute (Regular plus
Luxury) and also 4N ounces of Chanelle (Regular plus Luxury). There are 16,000 ounces of Regular
Chanelle and no ounces of Luxury Chanelle. So, we have the 1 (4,000 pounds) to 4 (16,000 ounces)
proportion for Chanelle. Analogously, we also have the 1 (4,000 pounds) to 3 (11,333.333 ounces plus
666.667 ounces) proportion for Brute. Good, we are in the real world.
Without the mass conservation constraints, glpsol prints this error to stdout like so:

Listing 3. Errors without mass conservation

It says that the problem has no dual feasible solution, but what does that mean? Every problem has a

------ ------------ -- ------------- ------------- ------------- -------------
 1 x[rb] B 11333.3 0
 2 x[lb] B 666.667 0
 3 x[rc] B 16000 0
 4 x[lc] NL 0 0 -0.666667
 5 x[raw] B 4000 0

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 1.46e-11 on row 1
 max.rel.err. = 8.43e-17 on row 1
 High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

KKT.DE: max.abs.err. = 8.88e-16 on column 2
 max.rel.err. = 5.92e-17 on column 2
 High quality

KKT.DB: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

End of output

Reading model section from brute-production2.mod...
Reading data section from brute-production2.mod...
61 lines were read
Generating z...
Generating raw...
Generating time...
Model has been successfully generated
lpx_simplex: original LP has 3 rows, 5 columns, 9 non-zeros
PROBLEM HAS NO DUAL FEASIBLE SOLUTION
If you need actual output for non-optimal solution, use --nopresol
Time used: 0.0 secs
Memory used: 0.1M (149646 bytes)
lpx_print_sol: writing LP problem solution to `brute-production2.sol'...

Page 6 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

dual equivalent. For example, a maximization problem can be rewritten as a minimization problem.
The maximization problem is then called the primal problem, and the minimization is the dual
problem. If the primal were a minimization problem, then the dual would be a maximization problem.
Dual really means secondary or alternate, and primal means primary, or main, in plain English.
A primal problem that has no solution has an unbounded dual problem. An unbounded primal problem
has a dual problem that's not feasible! Because glpsol said the dual problem is not feasible, the primal
problem is unbounded (the Caribbean Islands situation I mentioned above).

Multiple solution problem
This section of the article describes a simple problem with multiple optimal solutions. All the problems
I've presented in this series so far had only one optimal solution. A problem with multiple solutions has
more than one point in its feasible region that either maximize or minimize a problem. The objective
function for these critical points are the same, regardless. Here's an example.

Modeling a multiple solution problem
Maximize the following objective function:

subject to the following two constraints:

The feasible region for this particular problem is given by the gray area of Figure 2.

Figure 2. Feasible region of the multiple solution problem

Page 7 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

Before writing a GNU MathProg program to find the optimal solution for this problem, analyze it a
little bit. You may recall from Part 2 in this series that the directional derivative of the objective
function gives the direction in which the objective function grows in a maximization problem. Recall
that the optimal solution is always on one of the vertices of the polyhedron created by the feasible
region. When the directional derivative of the objective function is perpendicular to one of the sides of
the polyhedron (formed by the constraints), all the points on that side of the polyhedron will have the
same value for the objective function, because they lie on a same iso-quanta.
An iso-quanta is a line in space formed by points with the same objective function value. In this
problem, x1+x2=1 is an iso-quanta, x1+x2=2 is another iso-quanta, and so on. If a constraint line is the
farthest one along the directional derivative of the objective function and is perpendicular to that
derivative, then all points on that boundary of the feasible region will make the objective solution
reach its optimal value.

GNU MathProg solution for the multiple solution problem
The following is a GNU MathProg solution for the multiple solution problem:

Listing 4. Multiple solution problem solved with MathProg
 1 #
 2 # Multiple solution problem
 3 #
 4 # This finds the optimal solution for a simple multiple solution problem
 5 #
 6
 7 /* decision variables */
 8 var x1 >=0;
 9 var x2 >=0;
10
11 /* objective function */

Page 8 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

This very simple program declares the two decision variables: the constraint and the objective
function.
Listing 5 shows the results:

Listing 5. glpsol's report

The solution is optimal and the objective function value is 5. The second half of the report shows that
the constraint is bounded and its marginal value is 1.
In the third section, the variable x2 is on its lower bound and has a marginal value. This marginal value
is reported as <eps, which is the unit of precision GLPK uses internally (in math, epsilon is
commonly used to indicate a very small number, and this is the abbreviation). Something smaller than
the minimal precision is very likely to be zero. Therefore, the x2 variable would change the value of
the objective function by 0 if it could ever be relaxed. In other words, a change in x2 won't change the
objective function's value, given that the constraint holds for the new (x1, x2) pair. So there are
multiple points in the feasible region that yield the same value for the objective function. This problem

12 maximize z: x1 + x2;
13
14 /* constraints */
15 s.t. Ctr: x1 + x2 <= 5;
16
17 end;

Problem: multiple
Rows: 2
Columns: 2
Non-zeros: 4
Status: OPTIMAL
Objective: z = 5 (MAXimum)

 No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 z B 5
 2 Ctr NU 5 5 1

 No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 x1 B 5 0
 2 x2 NL 0 0 < eps

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

KKT.DE: max.abs.err. = 0.00e+00 on column 0
 max.rel.err. = 0.00e+00 on column 0
 High quality

KKT.DB: max.abs.err. = 0.00e+00 on row 0
 max.rel.err. = 0.00e+00 on row 0
 High quality

End of output

Page 9 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

has multiple solutions!
Remember that whenever glpsol reports that the marginal value of a variable is <eps, that indicates a
multiple solution problem.

Set covering (basketball) problem
The set covering problem teaches binary decision variables; that is, they can only be 0 or 1, yes or no.

A basketball coach intends to set up his team for a game. The team consists of seven
players from which five will play. The abilities of each player have been measured on a
scale of 1 (poor) to 3 (excellent) for the skills of assisting, defending, throwing, and
rebounding. There are three positions in which they can play: back-field (B), mid-field
(M), and front-field (F). The positions in which each player can play and their abilities are
shown in Table 1.

Table 1. Players and their abilities

The five chosen players must collectively satisfy the following constraints:
� At least three players must be capable of playing back-field.
� At least two players must be capable of playing front-field.
� At least one player must be capable of playing mid-field.
� The five players' average in terms of assisting, rebounding, defending, and throwing must be at
least 2.

� If player 3 is playing, then player 6 can't play, and vice-versa.
� If player 1 is playing, then players 4 and 5 must also play.
� Either player 2 or player 3 must play.

The objective is to maximize the defensive ability of the players for this game.

Modeling the basketball problem
First, decide what decision variables to use. There are seven players on the team. Which five of them
will play? Seven binary variables will decide if each player i will play (if the decision variable is 1) or
not (0):

The objective function seeks to maximize the defensive ability of the players.

Player Position Assisting Throwing Rebound Defense
1 B 3 3 1 3
2 M 2 1 3 2
3 BM 2 3 2 2
4 MF 1 3 3 1
5 BF 1 3 1 2
6 MF 3 1 2 3
7 BF 3 2 2 1

Page 10 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

There is no need to divide the objective function by 5 to obtain the average, because maximizing f(x)
and f(x) divided by CONSTANT is the same. In other words, the division doesn't change the direction
that maximizes the objective function.
Next come the constraints. The first one says that at least three players must be able to play in the
back-field. Only players 1, 3, 5, and 7 can do that:

This constraint, therefore, ensures that at least three of those four binary variables will be 1.
Similarly, for the mid-field, one of the players 2, 3, 4, and 6 is needed:

The front-field needs two of the players 4, 5, 6, and 7.

The average ability to assist, rebound, defend, and throw must be at least 2:

The fifth constraint says that if player 3 plays, then player 6 can't play, and vice-versa. So only one of
them can play:

For this equation, if y3=1, this constraint forces y6 to be zero, and vice versa. This constraint forces
either player 1 or 6 to be on the team for the game, though. That's not exactly what the coach wanted.
They could both be out of the game occasionally, and this equation would not make it possible.

Now, if y3=1, y6=0 because the sum can't be more than 1. If y6=1, then y3=0. If both y3 and y6 are zero,
that's fine too.

Page 11 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

The sixth constraint declares that when player 1 plays, players 4 and 5 must also play (perhaps it's in
their contract). So, y4 and y5 must be 1 when y1=1:

This pair of inequalities is tricky. If y1=0, y4 >= 0. This means that player 4 may play if player 1 is not
playing. If player 1 plays, however, y4 >= 1, so y4 equals 1. When player 1 is playing, player 4 is also
playing. The same type of inequality is enforced for player 5.
The last constraint says that either players 2 or 3 must play. Note that they can't both play at the same
time:

Remember the first try for the constraint regarding players 3 and 6? This constraint enforces that either
player 2 or 3 will be on the game, but not both.
There's a hidden constraint: a basketball team has five players on the court. Therefore:

To ensure that the decision variables are binary, they are declared to take only values in a binary set:

Because this problem is actually the selection of decision variables to cover some constraints, it's
called a set covering problem.

GNU MathProg solution for the set covering problem
As above, the line numbers in this code are not part of the code itself. They have been added only for
the sake of making references to the code later.

Listing 6. GNU MathProg solution to the set covering problem
 1 #
 2 # Basketball problem
 3 #
 4 # This finds the optimal solution for maximizing the team's overall
 5 # defensive skill
 6 #
 7
 8 /* sets */
 9 set SKILLS;
10 set POSITIONS;

Page 12 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

There are four parameters:
� skill is a two-dimensional table where i denotes the player and j lists the skills. The values of

11 set PLAYERS;
12
13 /* parameters */
14 param skill {i in PLAYERS, j in SKILLS};
15 param position {i in PLAYERS, j in POSITIONS};
16 param min_in_position {i in POSITIONS};
17 param min_skill_average {i in SKILLS};
18
19 /* decision variables: yi, i in {1,..,7}. yi = 1 -> player i is on team */
20 var y {i in PLAYERS} binary >=0;
21
22 /* objective function */
23 maximize z: sum{i in PLAYERS} skill[i,"defense"]*y[i];
24
25 /* Constraints */
26 s.t. pos{j in POSITIONS}: sum{i in PLAYERS}
 position[i,j]*y[i] >= min_in_position[j];
27 s.t. players: sum{i in PLAYERS} y[i] = 5;
28 s.t. ctr3: y[3] + y[6] <= 1;
29 s.t. ctr4a: y[4] - y[1] >= 0;
30 s.t. ctr4b: y[5] - y[1] >= 0;
31 s.t. ctr5: y[2] + y[3] = 1;
32 s.t. average{j in SKILLS}: sum{i in PLAYERS}
 skill[i,j]*y[i]/5 >= min_skill_average[j];
33
34 data;
35 set PLAYERS := 1 2 3 4 5 6 7;
36 set POSITIONS := Back Mid Front;
37 set SKILLS := assist throw rebound defense;
38
39 param min_in_position:=
40 Back 3
41 Mid 1
42 Front 2;
43
44 param min_skill_average:=
45 assist 2
46 throw 2
47 rebound 2
48 defense 2;
49
50 param position: Back Mid Front:=
51 1 1 0 0
52 2 0 1 0
53 3 1 1 0
54 4 1 0 1
55 5 1 0 1
56 6 0 1 1
57 7 1 0 1;
58
59
60 param skill: assist throw rebound defense:=
61 1 3 3 1 3
62 2 2 1 3 2
63 3 2 3 2 2
64 4 1 3 3 1
65 5 1 3 1 2
66 6 3 1 2 3
67 7 3 2 2 1;
68
69 end;

Page 13 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

this table are the numerical ability of player i with skill j.

� position is a two-dimensional binary table with players along i and j listing the positions. This
table determines whether player i can play on position j (if the value is 1).

� min_in_position is defined on the POSITIONS set to define the minimum number of players
that can play position i.

� min_skill_average is defined on the SKILLS set to set the minimum average the playing
players must have regarding skill i. This average happens to be the same for all of them as given
in the problem, but it should be declared separately in case the coach needs to shift the team's
balance.

The heart of this problem is the declaration of the decision variables as binary variables. They are as
easy to declare as integer variables. Just add a binary to the declaration as shown on line 20.
Here's the output:

Listing 7. glpsol report for the set covering problem

Note that all the decision variables are either 0 or 1, as expected.

Problem: basketball
Rows: 13
Columns: 7 (7 integer, 7 binary)
Non-zeros: 62
Status: INTEGER OPTIMAL
Objective: z = 11 (MAXimum) 11 (LP)

 No. Row name Activity Lower bound Upper bound
------ ------------ ------------- ------------- -------------
 1 z 11
 2 pos[Back] 3 3
 3 pos[Mid] 2 1
 4 pos[Front] 3 2
 5 players 5 5 =
 6 ctr3 1 1
 7 ctr4a 0 -0
 8 ctr4b 0 -0
 9 ctr5 1 1 =
 10 average[assist]
 2 2
 11 average[throw]
 2.2 2
 12 average[rebound]
 2 2
 13 average[defense]
 2.2 2

 No. Column name Activity Lower bound Upper bound
------ ------------ ------------- ------------- -------------
 1 y[1] * 1 0 1
 2 y[2] * 1 0 1
 3 y[3] * 0 0 1
 4 y[4] * 1 0 1
 5 y[5] * 1 0 1
 6 y[6] * 1 0 1
 7 y[7] * 0 0 1

End of output

Page 14 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

Conclusion
This series of articles analyzed six problems, each one teaching a new concept through modeling the
problem, writing it in a simple and elegant way in the GNU MathProg language so that GLPK can
solve it, and analyzing the results.
The uses of linear programming and Operations Research to search for optimal solutions do not end
with the problems in this series of articles. Areas such as petroleum, chemistry, food, and finance use
linear solvers and Operations Research heavily.
I encourage you to use and share the concepts discussed here, so that more people learn the power of
linear programming and Operations Research. I hope you found the material useful.

Resources
Learn
� Read the entire series, "The GNU Linear Programming Kit" (developerWorks, August and
September 2006).

� The problems in this article are taken with permission from Operations Research: Applications
and Algorithms, 4th Edition, by Wayne L. Winston (Thomson, 2004).

� The online documentation for GLPK gives more information about GLPK, how to get the
software, and how to join the GLPK community.

� Subscribe to the GLPK help mailing list or bug reports mailing list.

� In the developerWorks Linux zone, find more resources for Linux developers.

� Stay current with developerWorks technical events and Webcasts.

Get products and technologies
� With IBM trial software, available for download directly from developerWorks, build your next
development project on Linux.

Discuss
� Check out developerWorks blogs and get involved in the developerWorks community.

About the author
Rodrigo Ceron Ferreira de Castro is a Staff Software Engineer at the IBM Linux Technology Center.
He graduated from the State University of Campinas (UNICAMP) in 2004. He received the State
Engineering Institute prize and the Engineering Council Certification of Honor when he graduated.
He's given speeches in open source conferences in Brazil and other countries.
Trademarks | My developerWorks terms and conditions

Page 15 of 15The GNU Linear Programming Kit, Part 3: Advanced problems and elegant solutions

2010-01-28http://66.102.9.132/search?q=cache:nxFj84QXLD8J:www.ibm.com/developerworks/l...

