

Biofuels: Social, environmental and economic concerns

Georgios Avgerinopoulos

gav@kth.se

Introductory lecture – Energy commodities and technologies

This work by OpTIMUS.community is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Global trends

- Biofuels: overview
- Economic concerns
- Environmental concerns
- Social concerns

Biofuels: overview

- First generation biofuels (1G) produced from food-grade biomass by natural microbiological processes.
 - Example: vegetable oils, ethanol, biogas from crops.
- ➤ 1G non-food biofuels produced by natural processes but from non-edible biomass, i.e. from organic residues, sewage sludge or garbage.
 - Example: biogas.
- Second generation biofuels (2G) produced by advanced thermochemical conversion methods from non-edible biomass feedstocks.
 - Example: alcohols or biosynthetic fuels from wood or from another lignocellulosic material!
- Third generation biofuels (3G) based on more productive, special grown non-food biomass feedstocks.
 - Example: algae, genetically modified or hybrid crops, artificial photosynthesis.

Biofuels: overview

- Utilized in thermal power plants, boilers and suitable vehicles
 - Thermal efficiency 35-40-% of ICE, up to 90% in the case of cogeneration
- Base load supply
- Power plant cost comparable to fossil fuels
- Biofuel production cost depends on the fuel type

Biofuels: economic concerns

- Susceptible to aging and freezing
- > Difficult to maintain the production process in small scales
- Existing infrastructure can sometimes handle biofuels but in many cases modification or equipment replacement is required

Biofuels: environmental concerns

- Deforestation
- Reduction in biological diversity
- > Erosion
- Typically high input of energy required (fertilisers, harvesting processing)
- New agricultural land, less retention of water in soil, desertification (higher evapotranspiration)
- Improper irrigation of energy crops => soil salinity
- Ground water pollution due to fertilisers
- ➤ H2O for biogas production and distilleries =>
 - Production of waste water rich in N2, phosphorous and potassium.

Biofuels: social concerns

➤ Biofuel production requires significant amounts of water (often scarce). This leads to a clear trade-off in water allocation.

Land use conflict. Biomass alone can NOT be a single source of both fuel and food for the growing population on planet Earth. Efficient production/conversion/utilisation methods should be sought.

Visual impact on land.

Technologies in the biofuels chain

- Biomass production
- Biogas and bio-synthetic gas production
- Biomass for heat and power

Sample Reference Energy System: biofuels

Processes for bioenergy conversion

Biomass Production

- ➤ Biomass is comes from agriculture/forest products/residues as well as waste.
- > Various harvesting or collection methods are applied.
- Treatment includes chipping, drying, pelleting and torrefaction.
- > Transport is done by truck, train and ship.
- It can be either used in solid form (e.g. chips or pellets) or converted in to liquid fuels (ethanol, biodiesel, etc.), or gas (syngas, biogas).

Key characteristics				
Pellet Production Plant (40,000 t/yr capacity)				
Capital cost	4866 k\$			
FOM cost	225 k\$/a			
Energy use	0.410 GJ/t pellets			
Utilization factor	91%			

Biogas and bio-synthetic gas production

- ➤ Biogas usually produced by anaerobic digestion. Applications also in developing countries and rural contexts.
- ➤ Bio-syngas production less mature. Gasification technologies work on same principles as those for coal. Potentially higher production rates.

Key characteristics			
Anaerobic digester			
Capital cost	5000-7500 USD / Nm3/h		
FOM cost	2-7% of capital		
Energy use	Up to 15% of feed		
CO2 emission factor	11-20 gCO2/MJ		

Biomass for Heat and Power

- The most common application of biomass in the energy sector is combined heat and power (CHP) generation.
- > CHP (if not for industrial use) is coupled with district heating.
- Co-firing of biomass/biogas with coal/natural gas respectively is possible with a few adjustments.

Key characteristics			
Biomass CHP plant			
Capital cost	3000-6000 \$/kW		
FOM cost	100 \$/kW/a		
Fuel cost	30-50 \$/MWh		
Electric Efficiency	16-36%		
Totall Efficiency	40-85%		

References and reading material

IEA, World Energy Outlook 2016;

European Commission, Joint Research Centre, Energy Technology Reference Indicators (ETRI) 2014. Available at:

https://setis.ec.europa.eu/sites/default/files/reports/ETRI-2014.pdf;

IEA, NEA, Projected Costs of Generating Electricity 2015. Available at: https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf;

IEA-ETSAP, Energy Technology Data Source. Available at: https://iea-etsap.org/index.php/energy-technology-data;

Sources for the RES pictures

Gasification: http://www.gbgasifired.com/model.html

Extraction: http://www.energytrendsinsider.com/research/coal/coal-mining-and-processing/

Refinery: http://stillwaterassociates.com/crack-spread-a-quick-and-dirty-indicator-of-refining-profitability/

Biomass: http://inhabitat.com/tag/biomass/

Renewables: http://www.topnews.in/wind-water-and-sun-beat-biofuels-nuclear-and-coal-clean-energy-297577

Uranium: http://unitednuclear.com/index.php?main page=product info&products id=1028

Fossil: https://www.slideshare.net/MMoiraWhitehouse/fossil-fuels-teach

Combustion based power plants: https://en.wikipedia.org/wiki/Battersea Power Station in popular culture

Uranium enrichment: http://energyfromthorium.com/2010/08/06/loveswu1/

Residential: http://jhsimpson.com/residential/

Transport: https://se.123rf.com/clipart-vektorer/transport.html

Industry: http://indianexpress.com/article/business/economy/factory-output-grows-2-per-cent-in-february-after-3-months-of-contraction/

Commercial: http://www.alfalaval.com/industries/refrigeration/commercial-refrigeration/

Transportation of fuel: http://www.zerohedge.com/news/2017-06-23/demand-oil-pipeline-capacity-hits-6-year-low

Transportation of biomass: http://www.forestenergy.ie/transportation-studies.php

Transportation of oil products: http://www.picquery.com/gasoline-truck WXRZaplkZ2eaRVifu*zjqPAvrMnnxmBsTSgdn*BBBKk/

Sources for the RES pictures

Decentralized energy supply: http://trayamtechnologies.com/solar-pv-roof-top-and-ground-mounting/

Decentralized energy supply2: http://www.sunwindenergy.com/photovoltaics/38-mw-rooftop-pv-system-completed-uk

Biogas and bio-synthetic gas production: https://ehp.niehs.nih.gov/123-a180/

Onshore wind: https://www.mitchelltech.edu/programs/on-campus/energy-production-transmission/wind-turbine-technology

Offshore wind: http://inhabitat.com/tag/offshore-wind-farm/

Solar tower: http://www.power-technology.com/projects/seville-solar-tower/seville-solar-tower1.html

PV panels: https://dir.indiamart.com/coimbatore/solar-pv-panel.html

Solar power area requirements: http://forums.mwerks.com/showthread.php?7477561-Global-Energy-Thread

Bioenergy conversion:

http://14.139.172.204/nptel/CSE/Web/103102022/environmental%20issues%20and%20new%20trends/ecological%20consideration%20issues%20and%20issu

Changelog and attribution

Date	Author	Reviewer	Reviser
2017-09-26	Georgios Avgerinopoulos	Mark Howells	Georgios Avgerinopoulos

To correctly reference this work, please use the following:

Avgerinopoulos, G., 2017. Biofuels: Social, environmental and economic concerns, OpTIMUS.community.

Available at: http://www.osemosys.org/understanding-the-energy-system.html. [Access date]